Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вышка.docx
Скачиваний:
1
Добавлен:
20.11.2019
Размер:
313.98 Кб
Скачать

10. Касательная плоскость и нормаль к поверхности

 Определение 1. Касательной плоскостью к поверхности   в данной точке P (x0, y0, z0) называется плоскость, проходящая через точку Р и содержащая в себе все касательные, построенные в точке Р ко всевозможным кривым на этой поверхности, проходящим через точку Р.

Пусть поверхность s задана уравнением F (хуz) = 0 и точка  P (x0, y0, z0) принадлежит этой поверхности. Выберем на поверхности какую-либо кривую L, проходящую через точку Р.

Пусть х = х(t), у = у(t), z = z(t) –  параметрические уравнения линии L.

Предположим, что: 1) функция F(хуz) дифференцируема в точке Р и не все её частные производные в этой точке равны нулю; 2) функции  х(t),у(t), z(t) также дифференцируемы.

Поскольку кривая принадлежит поверхности s , то координаты любой точки этой кривой, будучи подставленными в уравнение поверхности, обратят его в тождество. Таким образом, справедливо тождественное равенство: F [x(t), у(t), z (t)] = 0.

Продифференцировав это тождество по переменной t, используя цепное правило, получим новое тождественное равенство, справедливое во всех точках кривой, в том числе и в точке P (x0, y0, z0):

.

Пусть точке Р соответствует значение параметра t0, то есть x0 = x (t0), y0 = y (t0),    z0 = z (t0). Тогда последнее соотношение, вычисленное в точке Р, примет вид

.                  (17)

Формула (17) представляет собой скалярное произведение двух векторов. Первый из них – постоянный вектор

,

не зависящий от выбора кривой на поверхности   .

Второй вектор  –  касательный в точке Р к линии L, а значит, зависящий от выбора линии на поверхности, то есть является переменным вектором.

П ри введённых обозначениях равенство (17) перепишем как  . Его смысл таков: скалярное произведение равно нулю, следовательно, векторы   и   перпендикулярны. Выбирая всевозможные кривые (см. рис. 54), проходящие через точку Р на поверхности s , мы будем иметь различные касательные векторы, построенные в точке Р к этим линиям; вектор же   от этого выбора не зависит и будет перпендикулярен любому из них, то есть все касательные векторы

расположены в одной плоскости, которая, по определению, является касательной к поверхности s , а точка Р в этом случае называется точкой касания. Вектор   является направляющим вектором нормали к поверхности.

Определение 2. Нормалью к поверхности s в точке Р называется прямая, проходящая через точку Р и перпендикулярная к касательной плоскости, построенной в этой точке.

Мы доказали существование касательной плоскости, а, следовательно, и нормали к поверхности. Запишем их уравнения:

;         (18)

(18) – уравнение касательной плоскости, построенной в точке P (x0, y0, z0) к поверхности s , заданной уравнением F(хуz) = 0;

;              (19)

  1. – уравнение нормали, построенной в точке Р к поверхности s .

11. В математическом анализе, производная по направлению — это обобщение понятия производной на случай функциинескольких переменных. Производная по направлению показывает, насколько быстро функция изменяется при движении вдоль заданного направления.

Производная функции одной переменной показывает, как изменяется её значение при малом изменении аргумента. Если мы попытаемся по аналогии определить производную функции многих переменных, то столкнёмся с трудностью: в этом случае изменение аргумента (то есть точки в пространстве) может происходить в разных направлениях, и при этом будут получаться разные значения производной. Именно это соображение и приводит к определению производной по направлению.

Рассмотрим функцию   от   аргументов в окрестности точки  . Для любогоединичного вектора   определим производную функции   в точке   по направлению   следующим образом:

Значение этого выражения показывает, как быстро меняется значение функции при сдвиге аргумента в направлении вектора  .

Если направление сонаправленно с координатной осью, то производная по направлению совпадает с частной производной по этой координате.

Градиент

[править]

Материал из Википедии — свободной энциклопедии

Эта статья о математической характеристике; о способе заливки см.: Градиент (компьютерная графика).

Операция градиента преобразует холм (слева), если смотреть на него сверху, в поле векторов (справа). Видно, что векторы направлены «в горку» и тем длиннее, чем круче наклон.

Градие́нт (от лат. gradiens, род. падеж gradientis — шагающий, растущий) — вектор, своим направлением указывающий направление наискорейшего возрастания некоторой величины  , значение которой меняется от одной точки пространства к другой (скалярного поля), а по величине (модулю) равный быстроте роста этой величины в этом направлении.

Например, если взять в качестве   высоту поверхности Земли над уровнем моря, то её градиент в каждой точке поверхности будет показывать «направление самого крутого подъёма», и своей величиной характеризовать крутизну склона.

С математической точки зрения градиент — этопроизводная скалярной функции, определенной на векторном пространстве.

Пространство, на котором определена функция, и её градиент может быть вообще говоря как обычным трехмерным пространством, так и пространством любой другой размерности любой физической природы или чисто абстрактным.

Термин впервые появился в метеорологии а в математику был введен Максвеллом в 1873 г. Обозначение grad тоже предложил Максвелл.

Стандартные обозначения:

или, с использованием оператора набла,

— вместо   может быть любое скалярное поле, обозначенное любой буквой, например   — обозначения градиента поля V.

12.

Экстремум функции двух переменных

Определение 1.11 Пусть задана функция двух переменных z=z(x,y), (x,y) D. ТочкаM0(x0;y0) - внутренняя точка области D.

Если в D присутствует такая окрестность UM0 точки M0, что для всех точек

то точка M0 называется точкой локального максимума. А само значение z(M0) - локальным максимумом.

А если же для всех точек

то точка M0 называется точкой локального минимума функции z(x,y). А само значение z(M0) - локальным минимумом.

Локальный максимум и локальный минимум называются локальными экстремумами функции z(x,y). На рис. 1.4 поясняется геометрический смысл локального максимума: M0 - точка максимума, так как на поверхности z =z (x,y) соответствующая ей точка C0 находится выше любой соседней точки C (в этом локальность максимума).

Заметим, что на поверхности в целом есть точки (например, В), которые находятся выше C0, но эти точки (например, В) не являются "соседними" с точкой C0.

В частности, точке В соответствует понятие глобального максимума:

Аналогично определяется и глобальный минимум:

Нахождение глобальных максимумов и минимумов будет рассмотрено в п.1.10.

Теорема 1.3 (необходимые условия экстремума).

Пусть задана функция z =z (x,y), (x,y) D. Точка M0(x0;y0 D - точка локального экстремума.

Если в этой точке существуют z'x и z'y, то

Геометрическое доказательство "очевидно". Если в точке C0 на (рис.1.4) провести касательную плоскость, то она "естественно" пройдет горизонтально, т. е. под углом  к оси Ох и к оси Оу.

Тогда в соответствии с геометрическим смыслом частных производных (рис.1.3):

что и требовалось доказать.

Определение 1.12.

Если в точке M0 выполняются условия (1.41), то она называется стационарной точкой функции z (x,y).

Теорема 1.4 (достаточные условия экстремума).

Пусть задана z =z (x,y), (x,y) D, которая имеет частные производные второго порядка в некоторой окрестности точки M0(x0,y0) D. Причем M0 - стационарная точка (т. е. необходимые условия (1.41) выполнены). Вычислим:

Если:

Доказательство теоремы использует темы (формула Тейлора функции нескольких переменных и теория квадратичных форм), которые в этом пособии не рассматриваются.

13.

Наибольшее и наименьшее значения функции двух переменных в замкнутой области

Теорема 1.5 Пусть в замкнутой области D задана функция z=z(x,y), имеющая непрерывные частные производные первого порядка. Граница Г области D является кусочно гладкой (т. е. состоит из кусков "гладких на ощупь" кривых или прямых). Тогда в области Dфункция z(x,y) достигает своего наибольшего M и наименьшего m значений.

Без доказательства.

Можно предложить следующий план нахождения M и m.  1. Строим чертёж, выделяем все части границы области D и находим все "угловые" точки границы.  2. Находим стационарные точки внутри D.  3. Находим стационарные точки на каждой из границ.  4. Вычисляем во всех стационарных и угловых точках, а затем выбираем наибольшее M и наименьшее m значения.