Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
61стр ЮР12 ВМ до Графиков СИТО.doc
Скачиваний:
3
Добавлен:
19.11.2019
Размер:
1.29 Mб
Скачать

Производные некоторых основных элементарных функций

  1. y = xn. Если n – целое положительное число, то, используя формулу бинома Ньютона:

(a + b)n = an+n·an-1·b + 1/2∙n(n – 1)an-2b2+ 1/(2∙3)∙n(n – 1)(n – 2)an-3b3+…+ bn,

можно доказать, что

Итак, если x получает приращение Δx, то f(xx) = (x + Δx)n, и, следовательно,

Δy=(xx)nxn =n·xn-1·Δx + 1/2·n·(n–1)·xn-2·Δx2 +…+Δxn.

Заметим, что в каждом из пропущенных слагаемых есть множитель Δx в степени выше 3.

Найдем предел

Мы доказали эту формулу для n  N. Далее увидим, что она справедлива и при любом n  R.

  1. y= sin x. Вновь воспользуемся определением производной. Так как, f(xx)=sin(xx), то

  2. Таким образом,

  3. Аналогично можно показать, что

  4. Рассмотрим функцию y= ln x. Имеем f(xx)=ln(xx). Поэтому

Итак,

  1. Используя свойства логарифма можно показать, что

Формулы 3 и 5 докажите самостоятельно.

ОСНОВНЫЕ ПРАВИЛА ДИФФЕРЕНЦИРОВАНИЯ. Применяя общий способ нахождения производной с помощью предела можно получить простейшие формулы дифференцирования. Пусть u=u(x),v=v(x) – две дифференцируемые функции от переменной x.

  1. .

  2. (справедлива для любого конечного числа слагаемых).

  3. .

  4. . Частные случаи: а) .б) .

Формулы 1 и 2 докажите самостоятельно.

Доказательство формулы 3. Пусть y = u(x) + v(x). Для значения аргумента xx имеем y(xx)=u(xx) + v(xx). Тогда Δy=y(xx) – y(x) = u(xx) + v(xx)u(x)v(x) = Δuv.

Следовательно, .

Доказательство формулы 4. Пусть y=u(x)·v(x). Тогда y(xx)=u(xxv(xx), поэтому Δy=u(xxv(xx) – u(xv(x). Заметим, что поскольку каждая из функций u и v дифференцируема в точке x, то они непрерывны в этой точке, а значит u(xx)→u(x), v(xx)→v(x), при Δx→0.

Поэтому можем записать

На основании этого свойства можно получить правило дифференцирования произведения любого числа функций. Пусть, например, y=u·v·w. Тогда,

y ' = u '·(w) + u·(v ·w) ' = uv·w + u·(v '·w +v·w ') = uv·w + u·v '·w + u·v·w '.

Доказательство формулы 5. Пусть . Тогда

При доказательстве воспользовались тем, что v(x+Δx)v(x) при Δx→0.

Примеры.

  1. Если , то

  2. y = x3 – 3x2 + 5x + 2. Найдем y '(–1).

y ' = 3x2 – 6x+ 5. Следовательно, y '(–1) = 14.

  1. y = ln x · cos x, то y ' = (ln x) ' cos x + ln x (cos x) ' =1/x∙cos x – ln x · sin x.

Таким образом, . Аналогично для y= ctgx,

ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ. Пусть y = f(u), а u= u(x). Получаем функцию y, зависящую от аргумента x: y = f(u(x)). Последняя функция называется функцией от функции или сложной функцией.

Областью определения функции y = f(u(x)) является либо вся область определения функции u=u(x) либо та ее часть, в которой определяются значения u, не выходящие из области определения функции y= f(u).

Операция "функция от функции" может проводиться не один раз, а любое число раз.

Установим ПРАВИЛО ДИФФЕРЕНЦИРОВАНИЯ СЛОЖНОЙ ФУНКЦИИ.

Теорема. Если функция u= u(x) имеет в некоторой точке x0 производную и принимает в этой точке значение u0 = u(x0), а функция y= f(u) имеет в точке u0 производную y 'u= f '(u0), то сложная функция y = f(u(x)) в указанной точке x0 тоже имеет производную, которая равна y 'x= f '(u0u '(x0), где вместо u должно быть подставлено выражение u= u(x).

Таким образом, производная сложной функции равна произведению производной данной функции по промежуточному аргументу u на производную промежуточного аргумента по x.

Доказательство. При фиксированном значении х0 будем иметь u0=u(x0), у0=f(u0). Для нового значения аргумента x0x: Δu= u(x0 + Δx) – u(x0), Δy=f(u0u) – f(u0).

Т.к. u – дифференцируема в точке x0, то u – непрерывна в этой точке. Поэтому при Δx→0 Δu→0. Аналогично при Δu→0 Δy→0.

По условию . Из этого соотношения, пользуясь определением предела, получаем (при Δu→0) , где α→0 при Δu→0, а, следовательно, и при Δx→0.

Перепишем это равенство в виде: Δy= y 'uΔu+α·Δu.

Полученное равенство справедливо и при Δu=0 при произвольном α, так как оно превращается в тождество 0=0. При Δu=0 будем полагать α=0. Разделим все члены полученного равенства на Δx

. По условию . Поэтому, переходя к пределу при Δx→0, получим y 'x= y 'u·u 'x . Теорема доказана.

Итак, чтобы продифференцировать сложную функцию y = f(u(x)), нужно взять производную от "внешней" функции f, рассматривая ее аргумент просто как переменную, и умножить на производную от "внутренней" функции по независимой переменной.

Если функцию y=f(x) можно представить в виде y=f(u), u=u(v), v=v(x), то нахождение производной y 'x осуществляется последовательным применением предыдущей теоремы.

По доказанному правилу имеем y 'x= y 'u·u 'x . Применяя эту же теорему для u 'x получаем , т.е. y 'x = y 'x· u 'v· v 'x = f 'u (uu 'v (vv 'x (x).

Примеры. 1) y = sin x2. Тогда .

2)

3)

4)

ПОНЯТИЕ ОБРАТНОЙ ФУНКЦИИ. Начнем с примера. Рассмотрим функцию y= x3. Будем рассматривать равенство y= x3 как уравнение относительно x. Это уравнение для каждого значения у определяет единственное значение x: . Геометрически это значит, что всякая прямая параллельная оси Oxпересекает график функции y= x3 только в одной точке. Поэтому мы можем рассматривать x как функцию от y. Функция называется обратной по отношению к функции y= x3.

Прежде чем перейти к общему случаю, введем определения.

Функция y = f(x) называется возрастающей на некотором отрезке, если большему значению аргумента x из этого отрезка соответствует большее значение функции,т.е.если x2>x1, то f(x2)>f(x1).

Аналогично функция называется убывающей, если меньшему значению аргумента соответствует большее значение функции, т.е. еслих2 < х1 , то f(x2) > f(х1).

Итак, пусть дана возрастающая или убывающая функция y= f(x), определенная на некотором отрезке [a; b]. Для определенности будем рассматривать возрастающую функцию (для убывающей все аналогично).

Рассмотрим два различных значения х1 и х2. Пусть y1=f(x1), y2=f(x2). Из определения возрастающей функции следует, что если x1<x2, то у1<у2. Следовательно, двум различным значениям х1 и х2 соответствуют два различных значения функции у1 и у2. Справедливо и обратное, т.е. если у1<у2, то из определения возрастающей функции следует, чтоx1<x2. Т.е. вновь двум различным значениям у1 и у2 соответствуют два различных значенияx1 и x2. Т.о., между значениями x и соответствующими им значениями y устанавливается взаимно однозначное соответствие, т.е. уравнение y=f(x) для каждого y (взятого из области значений функции y=f(x)) определяет единственное значение x, и можно сказать, что x есть некоторая функция аргумента y: x= g(у).

Эта функция называется обратной для функции y=f(x). Очевидно, что и функция y=f(x) является обратной для функции x=g(у).

Заметим, что обратная функция x=g(y) находится путем решения уравнения y=f(x) относительно х.

Пример. Пусть дана функция y = ex. Эта функция возрастает при –∞ < x <+∞. Она имеет обратную функцию x = lny. Область определения обратной функции 0 < y < + ∞.

Сделаем несколько замечаний.

Замечание 1. Если возрастающая (или убывающая) функция y=f(x) непрерывна на отрезке [a; b], причем f(a)=c, f(b)=d, то обратная функция определена и непрерывна на отрезке [c; d].

Замечание 2. Если функция y=f(x) не является ни возрастающей, ни у бывающей на некотором интервале, то она может иметь несколько обратных функций.

Пример. Функция y=x2 определена при –∞<x<+∞. Она не является ни возрастающей, ни убывающей и не имеет обратной функции. Однако, если мы рассмотрим интервал 0≤x<+∞, то здесь функция является возрастающей и обратной для нее будет . На интервале – ∞ <x≤ 0 функция – убывает и обратная для нее .

Замечание 3. Если функции y=f(x) и x=g(y) являются взаимно обратными, то они выражают одну и ту же связь между переменными x и y. Поэтому графикомих является одна и та же кривая. Но если аргумент обратной функции мы обозначим снова через x, а функцию через y и построим их в одной системе координат, то получим уже два различных графика. Легко заметить, что графики будут симметричны относительно биссектрисы 1-го координатного угла.

ТЕОРЕМА О ПРОИЗВОДНОЙ ОБРАТНОЙ ФУНКЦИИ. Докажем теорему, позволяющую находить производную функции y=f(x), зная производную обратной функции.

Теорема. Если для функции y=f(x) существует обратная функция x=g(y), которая в некоторой точке у0 имеет производную g '(v0), отличную от нуля, то в соответствующей точке x0=g(x0) функция y=f(x) имеет производную f '(x0), равную , т.е. справедлива формула .

Доказательство. Т.к. x=g(y) дифференцируема в точке y0, то x=g(y) непрерывна в этой точке, поэтому функция y=f(x) непрерывна в точке x0=g(y0). Следовательно, при Δx→0 Δy→0.

Покажем, что .

Пусть . Тогда по свойству предела . Перейдем в этом равенстве к пределу при Δy→0. Тогда Δx→0 и α(Δx)→0, т.е. .

Следовательно, ,что и требовалось доказать. Эту формулу можно записать в виде . Рассмотрим применение этой теоремы на примерах.

Примеры.

  1. y = ex. Обратной для этой функции является функция x= ln y. Мы уже доказали, что . Поэтому согласно сформулированной выше теореме

Итак, (ex) ' = ex

  1. Аналогично можно показать, что (ax) ' = ax·lna. Докажите самостоятельно.

  2. y = arcsin x. Рассмотрим обратную функцию x = sin y. Эта функция в интервале – π/2<y<π/2 монотонна. Ее производная x ' = cos y не обращается в этом интервале в нуль. Следовательно, по теореме о производной обратной функции . Но на (–π/2; π/2) . Поэтому

  3. Аналогично Докажите самостоятельно.

  4. y = arctg x. Эта функция по определению удовлетворяет условию существования обратной функции на интервале –π/2< y < π/2. При этом обратная функция x = tg y монотонна. По ранее доказанному . Следовательно, y ' = cos2 y . Но .

Поэтому

  1.  

  2. Используя эти формулы, найти производные следующих функций:

ЛОГАРИФМИЧЕСКОЕ ДИФФЕРЕНЦИРОВАНИЕ. Дифференцирование многих функций упрощается, если их предварительно прологарифмировать. Для этого поступают следующим образом. Если требуется найти y' из уравнения y=f(x), то можно:

  1. Прологарифмировать обе части уравнения (по основанию е) ln y = ln f(x) = j(x).

  2. Продифференцировать обе части равенства, считая ln y сложной функцией от переменной x: .

  3. Выразить y' = y·j'(x) = f(x)·(lnx)'.

Примеры.

  1. y = xa – степенная функция с произвольным показателем.

.

ПОКАЗАТЕЛЬНО-СТЕПЕННАЯ ФУНКЦИЯ И ЕЕ ДИФФЕРЕНЦИРОВАНИЕ. Показательно-степенной функцией называется функция вида y = uv, где u=u(x), v=v(x). Логарифмическое дифференцирование применяется для нахождения производной от показательно-степенной функции.

Примеры.

  1. .

ТАБЛИЦА ПРОИЗВОДНЫХ. Объединим в одну таблицу все основные формулы и правили дифференцирования, выведенные ранее.Всюду будем полагать u=u(x), v=v(x), С=const. Для производных основных элементарных функций будем пользоваться теоремой о производной сложной функции.

  1. .

  2. .

  3. .

  4. .

  5. . а) . б) .

  6. .

  7. . .

  8. .

  9. .

  10. .

  11. .

  12. .

  13. .

  14. .

  15. .

  16. .

Примеры.

  1. . Найти y'(–1).

ПОНЯТИЕ ДИФФЕРЕНЦИАЛА ФУНКЦИИ. СВЯЗЬ МЕЖДУ ДИФФЕРЕНЦИАЛОМ И ПРОИЗВОДНОЙ

Пусть функция y=f(x) дифференцируема на отрезке [a; b]. Производная этой функции в некоторой точке х0  [a; b] определяется равенством .

Следовательно, по свойству предела

Умножая все члены полученного равенства на Δx, получим: Δy = f '(x0)·Δx + a·Δx.

Итак, бесконечно малое приращение Δy дифференцируемой функции y=f(x) может быть представлено в виде суммы двух слагаемых, из которых первое есть (при f '(х0) ≠ 0) главная часть приращения, линейная относительно Δx, а второе – бесконечно малая величина более высокого порядка, чем Δx. Главную часть приращения функции, т.е. f '(х0)·Δx называют дифференциалом функции в точке х0 и обозначают через dy.

Таким образом, если функция y=f(x) имеет производную f '(x) в точке x, то произведение производной f '(x) на приращение Δx аргумента называют дифференциалом функции и обозначают:

dy = f '(x)·Δx

Найдем дифференциал функции y= x. В этом случае y' = (x)' = 1 и, следовательно, dy=dxx. Таким образом, дифференциал dxнезависимой переменной xсовпадает с ее приращением Δx. Поэтому формулу (1) мы можем записать так: dy = f '(x)dx

Но из этого соотношения следует, что . Следовательно, производную f '(x) можно рассматривать как отношение дифференциала функции к дифференциалу независимой переменной.

Ранее мы показали, что из дифференцируемости функции в точке следует существование дифференциала в этой точке.

Справедливо и обратное утверждение. Если для данного значения x приращение функции Δy = f(xx) – f(x) можно представить в виде Δy = A·Δx + α, где α – бесконечно малая величина, удовлетворяющая условию , т.е. если для функции y=f(x) существует дифференциал dy=A·dx в некоторой точке x, то эта функция имеет производную в точке x и f '(x)=А.

Действительно, имеем , и так как при Δx→0, то .

Таким образом, между дифференцируемостью функции и существованием дифференциала имеется очень тесная связь, оба понятия равносильны.

Примеры. Найти дифференциалы функций:1)

2) .

ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ДИФФЕРЕНЦИАЛА. Рассмотрим функцию y=f(x) и соответствующую ей кривую. Возьмем на кривой произвольную точку M(x; y), проведем касательную к кривой в этой точке и обозначим через α угол, который касательная образует с положительным направлением оси Ox. Дадим независимой переменной x приращение Δx, тогда функция получит приращение Δy = NM1. Значениям xx и yy на кривой y = f(x) будет соответствовать точка M1(xx; yy). И з ΔMNT находим NT=MN·tg α. Т.к. tg α = f '(x), а MN = Δx, то NT = f '(x)·Δx. Но по определению дифференциала dy=f '(x)·Δx, поэтому dy = NT.

Таким образом, дифференциал функции f(x), соответствующей данным значениям x и Δx, равен приращению ординаты касательной к кривой y=f(x) в данной точке х.

ТЕОРЕМА ОБ ИНВАРИАНТНОСТИ ДИФФЕРЕНЦИАЛА. Ранее мы видели, что если u является независимой переменной, то дифференциал функции y=f '(u) имеет вид dy = f '(u)du.

Покажем, что эта форма сохраняется и в том случае, когда u является не независимой переменной, а функцией, т.е. найдем выражение для дифференциала сложной функции. Пусть y=f(u), u=g(x) или y = f(g(x)). Тогда по правилу дифференцирования сложной функции: .

Следовательно, по определению , но g'(x)dx= du, поэтому dy= f'(u)du.

Мы доказали следующую теорему.

Теорема. Дифференциал сложной функции y=f(u), для которой u=g(x), имеет тот же вид dy=f'(u)du, какой он имел бы, если бы промежуточный аргумент u был независимой переменной.

Иначе говоря, форма дифференциала не зависит от того, является аргумент функции независимой переменной или функцией другого аргумента. Это свойство дифференциала называется инвариантностью формы дифференциала.

Пример. . Найти dy. Учитывая свойство инвариантности дифференциала, находим

.

ПРИМЕНЕНИЕ ДИФФЕРЕНЦИАЛА К ПРИБЛИЖЕННЫМ ВЫЧИСЛЕНИЯМ. Пусть нам известно значение функции y0=f(x0) и ее производной y0' = f '(x0) в точке x0. Покажем, как найти значение функции в некоторой близкой точке x. Как мы уже выяснили приращение функции Δyможно представить в виде суммы Δy=dy+α·Δx, т.е. приращение функции отличается от дифференциала на величину бесконечно малую. Поэтому, пренебрегая при малых Δx вторым слагаемым в приближенных вычислениях, иногда пользуются приближенным равенством Δydyили Δy»f'(x0)·Δx.

Т.к., по определению, Δy = f(x) – f(x0), то f(x) – f(x0)f'(x0)·Δx. Откуда f(x) ≈ f(x0) + f'(x0)·Δx

Примеры.

  1. y = x2 – 2x. Найти приближенно, с помощью дифференциала, изменение y (т.е. Δy), когда x изменяется от 3 до 3,01. Имеем Δydy=f'(x)·Δx. f'(x)=2x – 2 ,f'(3)=4, Δx=0,01.

Поэтому Δy ≈ 4·0,01 = 0,04.

  1. Вычислить приближенно значение функции в точке x = 17. Пусть x0= 16. Тогда Δx = xx0= 17 – 16 = 1, , .

Таким образом, .

  1. Вычислить ln 0,99. Решение. Будем рассматривать это значение как частное значение функции y=lnx при х=0,99. Положим x0 = 1. Тогда Δx = – 0,01, f(x0)=0. , f '(1)=1.Поэтому f(0,99) ≈ 0 – 0,01 = – 0,01.

ПРОИЗВОДНЫЕ ВЫСШИХ ПОРЯДКОВ. Пусть функция y=f(x) дифференцируема на некотором отрезке [a; b]. Значение производной f'(x), вообще говоря, зависит от x, т.е. производная f'(x) представляет собой тоже функцию переменной x. Пусть эта функция также имеет производную. Дифференцируя ее, получим так называемую вторую производную от функции f(x).

Производная от первой производной называется производной второго порядка или второй производной от данной функции y=f(x) и обозначается y''или f''(x). Итак, y'' = (y')'.

Например, если у = х5, то y'= 5x4, а y''= 20x4.

Аналогично, в свою очередь, производную второго порядка тоже можно дифференцировать. Производная от второй производной называется производной третьего порядка или третьей производной и обозначается y'''или f'''(x).

Вообще, производной n-го порядка от функции f(x) называется производная (первая) от производной (n – 1)-го порядка и обозначается символом y(n) или f(n)(x): y(n) = (y(n-1))'.

Таким образом, для нахождения производной высшего порядка от данной функции последовательно находят все ее производные низших порядков.

Примеры.

  1. Найти производную четвертого порядка функции y= ln x.

.

2.

.

3. Найти производную n-го порядка функции y = ekx.

y'= k·ekx, y''= k2·ekx, y''' = k3·ekx, …,y(n) =kn·ekx.

4. Найти производную n-го порядка функции y = sin x.

Имеем

Выясним механический смысл второй производной. (Механический смысл первой производной – скорость).

Пусть материальная точка движется прямолинейно по закону s=s(t), где s – путь, проходимый точкой за время t. Тогда скорость vэтого движения есть v= s'(t) = v(t), т.е. тоже некоторая функция времени.

В момент времени t скорость имеет значение v=v(t). Рассмотрим другой момент времени tt. Ему соответствует значение скорости v1 = v(tt). Следовательно, приращению времени Δt соответствует приращение скорости Δv= v1v = v(t + Δt) – v(t). Отношение называется средним ускорением за промежуток времени Δt.

Ускорением в данный момент времени t называется предел среднего ускорения при Δt→0:

.

Таким образом, ускорение прямолинейного движения точки есть производная скорости по времени. Но как мы уже видели, скорость есть производная пути s по времени t: v = s'. Учитывая это, имеем:

a = v'(t) = (s')' = s''(t),

т.е. ускорение прямолинейного движения точки равно 2-й производной пути по времени

a = S''(t).

ДИФФЕРЕНЦИАЛЫ ВЫСШИХ ПОРЯДКОВ. Пусть имеем функцию y=f(x), где x – независимая переменная. Тогда дифференциал этой функции dy=f'(x)dx также зависит от переменной x, причем от x зависит только первый сомножитель f'(x) , а dx = Δx от x не зависит (приращение в данной точке x можно выбирать независимо от этой точки). Рассматривая dy как функцию x, мы можем найти дифференциал этой функции.

Дифференциал от дифференциала данной функции y=f(x) называется вторым дифференциалом или дифференциалом второго порядка этой функции и обозначается d2y: d(dy)=d2y.

Найдем выражение второго дифференциала. Т.к. dxот x не зависит, то при нахождении производной его можно считать постоянным, поэтому

d2y = d(dy) = d[f '(x)dx)] = [f '(x)dx]'dx = f ''(x)dx·dx = f ''(x)(dx)2.

Принято записывать (dx)2 = dx2. Итак, d2у= f''(x)dx2.

Аналогично третьим дифференциалом или дифференциалом третьего порядка функции называется дифференциал от ее второго дифференциала:

d3y=d(d2y)=[f ''(x)dx2]'dx=f '''(x)dx3.

Вообще дифференциалом n-го порядка называется первый дифференциал от дифференциала (n – 1)-го порядка: dn(y)=d(dn-1y) dny = f(n)(x)dxn

Отсюда, пользуясь дифференциалами различных порядков, производную любого порядка можно представить как отношение дифференциалов соответствующего порядка:

ПРОИЗВОДНАЯ НЕЯВНОЙ ФУНКЦИИ. Пусть значения двух переменных x и y связаны между собой некоторым уравнением, которое символически запишем так:F(x, y) = 0.

(1)

Если на некотором множестве D каждому значению переменной x соответствует единственное значение y, которое вместе с x удовлетворяет уравнению (1), то будем говорить, что это уравнение задает неявную функцию y=f(x).

Из определения следует, что для любой неявной функции y=f(x), заданной уравнением (1), имеет место тождество F(x, f(x)) ≡ 0, справедливое при всех xD.

Например, уравнение x2 + y2a2 = 0 неявно определяет две элементарные функции . Действительно, после подстановки в исходное уравнение этих значений получим равенство x2+(a2x2) – a2 = 0.

Однако, не всякую неявно заданную функцию можно представить явно, т.е. в виде y=f(x).

Например, функции, заданные уравнениями y2yx2=0 или , не выражаются через элементарные функции, т.е. эти уравнения нельзя разрешить относительно y.

Заметим, что каждая явная функция y=f(x) может быть представлена и как неявная yf(x) = 0.

Таким образом, неявная функция – это определенный способ задания зависимости между переменными x и y.

Рассмотрим правило нахождения производной неявной функции, не преобразовывая ее в явную, т.е. не представляя в виде y=f(x).

Чтобы найти производную у' неявной функции F(x, y)=0, нужно обе части этого уравнения продифференцировать по x, рассматривая у как функцию от x, и из этого полученного уравнения найти искомую производную y'. Чтобы найти y'', нужно уравнение F(x, y)=0 дважды продифференцировать по x и выразить y'' и т.д.

Примеры. Найти производные функций заданных неявно.

1)

2)

Итак, производная неявной функции выражается, как правило, не только через аргумент, но и через функцию.

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ, ЗАДАННЫХ ПАРАМЕТРИЧЕСКИ.

Пусть даны два уравнения x=x(t), y=y(t), где t  [T1, T2].

(1)

Каждому значению t из [T1, T2] соответствуют определенные значения x и y. Если рассматривать значения x и y как координаты точки на плоскости xOy, то каждому значению t будет соответствовать определенная точка плоскости. Когда t изменяется от T1 до T2, эта точка на плоскости описывает некоторую кривую. Уравнения (1) называются параметрическими уравнениями этой кривой, t называется параметром, а способ задания кривой уравнениями (1) называется параметрическим.

Предположим, что функция x=x(t) имеет обратную t=t(x). Тогда, очевидно, у является функцией от x: y=y[t(x)]. Следовательно, уравнения (1) определяют y как функцию от x, и говорят, что функция y от x задается параметрически.

При рассмотрении функций, заданных параметрически, исключение параметра не всегда возможно. Во многих случаях удобнее задавать различные значения t и затем вычислять соответствующие значения аргумента x и функции y.

Пример. Пусть кривая задана параметрическими уравнениями:

Построим эту кривую на плоскости, придавая различные значения параметру t и находя соответствующие значения х и у.

При t =0 M(R, 0).

Таким образом, получаем окружность с центром в начале координат, радиуса R. Здесь t обозначает угол, образованный радиусом, проведенным в некоторую точку окружности М(x, y), и осью Ox.

Если исключим из этих уравнений параметр t, то получим уравнение окружности, содержащее только x и y. Возводя в квадрат параметрические уравнения и складывая их, находим:

x2+ y2=R2(cos2t + sin2t) или x2+ y2=R2.

Выведем правило нахождения производных функций, заданных параметрически. Пусть x=x(t), y=y(t), причем на некотором отрезке [T1, T2] функции x(t) и y(t) дифференцируемы и x' ≠ 0.

Т.к. у – функция, зависящая от переменной x, то будем считать, что функция x=x(t) имеет обратную t=t(x).

Будем обозначать: yx' – производная функции по переменной x, yt', xt', tx' – соответственно производные по t и х.

Воспользовавшись правилом дифференцирования сложной функции, получим . Производную tx' найдем по правилу дифференцирования обратной функции .

Окончательно, . Итак,

Полученную функцию можно рассматривать как функцию, заданную параметрически: . Используя эту формулу, можно находить и производные высших порядков функций, заданных параметрически. Найдем . По определению второй производной . Учитывая, что yx' есть функция параметра t, yx'=f(t), получаем:

Примеры.

  1. , y = arcsin (t–1). Найдем .

Следовательно, .

  1. Найти угловой коэффициент касательной к циклоиде x = a·(t – sin t), y = a·(1 – cost)

в произвольной точке (0 ≤t≤ 2·π).

Угловой коэффициент касательной .

x' = a·(1 – cost) ,y' = a·sin t. Поэтому .

  1. Найти .

УРАВНЕНИЯ КАСАТЕЛЬНОЙ И НОРМАЛИ К КРИВОЙ.Рассмотрим кривую, уравнение которой есть y=f(x). Возьмем на этой кривой точку M(x0, y0), и составим уравнение касательной к д анной кривой в точке M, предполагая, что эта касательная не параллельна оси Oy.

Уравнение прямой с угловым коэффициентом в общем виде есть у=kx + b. Поскольку для касательной k= f'(x0), то получаем уравнение y= f'(x0x + b. Параметр b найдем из условия, что касательная проходит через точку M(x0, y0). Поэтому ее координаты должны удовлетворять уравнению касательной: y0= f'(x0)·x0 + b. Отсюда b=y0f'(x0x0.

Таким образом, получаем уравнение касательной y= f'(x0x +y0f'(x0x0 или y = f '(x0)·(x x0) + f(x0)

Если касательная, проходящая через точку М(x0,y0) параллельна оси ординат (т.е. производная в этой точке не существует), то ее уравнение x= x0.

Наряду с касательной к кривой в данной точке часто приходится рассматривать нормаль.

Нормалью к кривой в данной точке называется прямая, проходящая через эту точку перпендикулярно к касательной в данной точке.

Из определения нормали следует, что ее угловой коэффициент kn связан с угловым коэффициентом касательной k равенством: .

Учитывая, что нормаль также как и касательная проходит через точку M(x0, y0), то уравнение нормали к кривой y= f(x) в данной точке M имеет вид:

Ясно, что если касательная параллельна оси Ox, т.е.f'(x0) = 0 и ее уравнение имеет вид y= y0, то нормаль в этой же точке будет перпендикулярна оси Ox. Значит, ее уравнение имеет вид x= x0.

Примеры.

  1. Составить уравнения касательной и нормали к графику функции у = tg2x в точке с абсциссой x0=π/4.

Уравнение касательной имеет вид y =4·(x – π/4) + 1 или y = 4x – π + 1.

Уравнение нормали будет y = –1/4·(x – π/4) + 1 или у = –1/4·x + π/16 + 1.

  1. Составить уравнения касательной и нормали к графику функции у = 0.5·(x – 2)2 + 5 в точке M(2; 5).

y'= x – 2, y'(2) = 0 . Следовательно, касательная параллельна оси Ox, а значит ее уравнение y= 5 . Тогда нормаль параллельна оси Oy и имеет уравнение x= 2 .

  1. Найти уравнение касательной и нормали к эллипсу в точке M(2; 3).

Найдем y' по правилу дифференцирования неявной функции .

Уравнение касательной: ,т.е. .

Уравнение нормали: , т.е. .

  1. Составить уравнения касательной и нормали к циклоиде x= t – sin t, y= 1 – cos tв точке М(x0; y0), которая соответствует значению параметра t = π/2.

При t=π/2x0= π/2 – 1, y0=1. .

Уравнение касательной: y = x – π/2 + 1 + 1, т.е. у = x – π/2 + 2.

Уравнение нормали: y = – x – π/2 – 1 + 1, т.е. у = – x – π/2.

ТЕОРЕМЫ О ДИФФЕРЕНЦИРУЕМЫХ ФУНКЦИЯХ. ТЕОРЕМА РОЛЛЯ. Если функция y= f(x) непрерывна на отрезке [a; b], дифференцируема во всех внутренних точках этого отрезка (т.е. на (а; b)) и на концах отрезка обращается в нуль f(a) = f(b) = 0, то на (a; b) найдется хотя бы одна точка c  (a; b), в которой f'(c) = 0.

Доказательство. Так как функция f(x) непрерывна на [a; b], то по одной из теорем о непрерывных функциях она достигает на этом отрезке наибольшего значения и наименьшего. Пусть

Заметим, что если М = m, то f(x) = const = 0 (по условию теоремы f(a)=f(b)=0) и, следовательно, f'(x)=0при всех x  [a; b] .

Предположим, что M≠m, тогда, по крайней мере, одно из этих чисел отлично от нуля. Для определенности будем считать, что М ≠0 и М > 0.

Пусть в точке x = c f(c)=М, при этом c≠a и с ≠ b, т.к. f(a)=f(b)=0. Придадим значению c приращение Δx и рассмотрим новую точку cx. Поскольку f(c) – наибольшее значение функции, то f(cx) – f(c)≤0 для любого Δx. Отсюда следует, что

Переходя в этих неравенствах к пределу при Δx→0 и учитывая, что производная при x = c существует, будем иметь:

Но неравенства f'(c) ≤ 0 и f'(c) ≥ 0 одновременно возможны лишь в случае, когда f'(c)=0. Теорема доказана. Эта теорема имеет простой геометрический смысл. Если непрерывная кривая, имеющая в каждой точке касательную, пересекает ось Ox в точках x=a и x=b, то на этой кривой найдется хотя бы одна точка с абсциссой c, a < c < b, в которой касательная параллельна оси Ox.

Заметим, что доказанная теорема останется справедливой, если предположить, что на концах отрезка функция принимает равные значения f(a)=f(b), не обязательно равные нулю.

Кроме того, отметим, что если внутри [a; b] найдется хотя бы одна точка, в которой производная функции f(x) не существует, то утверждение теоремы может оказаться неверным.

Пример. Функция непрерывна на [–1;1], обращается в нуль на концах отрезка. Но производная не обращается в нуль ни в одной точке этого отрезка.

Теорема Лагранжа. Если функция y= f(x) непрерывна на [a; b] и дифференцируема во всех внутренних точках этого отрезка, то внутри отрезка [a; b] найдется хотя бы одна точка c, a<c<b такая, чтоf(b) – f(a)=f'(c)(b – a).

Доказательство. Обозначим и рассмотрим вспомогательную функцию F(x) = f(x) – f(a) – k(x – a).

Выясним геометрический смысл введенной функции. Для этого рассмотрим график данной функции на [a; b] и напишем уравнение хорды АВ. Заметим, что угловой коэффициент хорды и она проходит через точку A(а; f(a)). Следовательно, ее уравнение y = f(a) + k(x – a).

Но F(x)=f(x)–[f(a)+k(x–a)]. ПоэтомуF(x) при каждом x есть разность ординат графика y= f(x) и хорды, соответствующих точкам с одинаковой абсциссой.

Легко видеть, что F(x) непрерывна на [a; b] , как разность непрерывных функций. Эта функция дифференцируема внутри [a; b] и F(a)=F(b)=0. Следовательно, к функции F(x) можно применить теорему Ролля. Согласно этой теореме найдется точка c  (a; b), что F'(c)=0. Но F '(x) = f'(x) – k, а значит,F'(c) = f'(c) – k = 0. Подставляя в это равенство значение k, получим ,что и требовалось доказать.

Теорему Лагранжа геометрически можно пояснить так. Рассмотрим график функции y=f(x), удовлетворяющий условиям теоремы и соединим концы графика на [a; b] хордой AB. Как мы уже отметили, отношение для хорды AB, а f'(c) есть угловой коэффициент касательной. Следовательно, теорема утверждает, что на графике функции y=f(x) найдется хотя бы одна точка, в которой касательная к графику параллельна хорде, соединяющей концы дуги.

Теорема Коши. Если f(x) и g(x) – две функции, непрерывные на [a; b] и дифференцируемые внутри него, причем g'(x) ≠ 0 при всех x  (a; b), то внутри отрезка [a; b] найдется хотя бы одна точка c  (a; b), что .

Доказательство. Определим число . Заметим, что g(b) – g(a) ≠ 0, т.к. в противном случае выполнялось бы равенство g(b)=g(a) и по теореме Ролля в некоторой точке d  (a; b)g'(d) = 0. Это противоречит условию теоремы. Составим вспомогательную функцию F(x) = f(x) – f(a) – k[g(x) – g(a)]. Несложно заметить, что F(a)=F(b)=0. Функция F(x) удовлетворяет на [a;b] всем условиям теоремы Ролля. Следовательно, найдется число сÎ(a; b) такое, что F'(c) = 0. Но F'(x) = f'(x) – k·g(x), а значит F'(c) = f'(c) – k·g'(c) = 0, откуда . Заметим, что теорему Коши нельзя доказать, применяя теорему Лагранжа к числителю и знаменателю дроби k. Объясните почему?

ПРАВИЛО ЛОПИТАЛЯ. Ранее мы познакомились с примерами нахождения пределов отношения двух бесконечно малых или бесконечно больших функций, то есть раскрытия неопределенностей вида 0/0 и ∞/∞. Сейчас рассмотрим новое правило раскрытия этих неопределенностей.

Теорема (ПРАВИЛО ЛОПИТАЛЯ). Пусть функции f(x) и g(x) дифференцируемы в некоторой окрестности точки a, за исключением, быть может, самой точки a, и пусть или . Тогда, если существует предел отношения производных этих функций , то существует и предел отношения самих функций f(x)/g(x) при xа, причем

(1)

Таким образом, коротко правило Лопиталя можно сформулировать следующим образом: предел отношения двух бесконечно малых или двух бесконечно больших величин равен пределу отношения их производных.

Замечание. Отметим, что формула (1) справедлива только в том случае, если предел, стоящий справа, существует. Может случиться, что предел, стоящий слева существует, в то время как предел, стоящий в правой части равенства, не существует. Например, найти . Этот предел существует . Но отношение производных (1+cosx)/1=1+cos x при x→∞ не стремится ни к какому пределу. Заметим, что если отношение производных опять представляет собой неопределенность вида 0/0 или ∞/∞, то можно снова применить сформулированную теорему, то есть перейти к отношению вторых производных и так далее. Вспомним, что к этим двум случаям сводятся случаи других неопределенностей: ∞·∞; 0·∞. Для раскрытия неопределенностей 1, 10, ∞0 нужно прологарифмировать данную функцию и найти предел ее логарифма.

Примеры.

  1. .

  2. .

  3. .

  4. Обозначим . Прологарифмируем это равенство . Найдем . Так как lny функция непрерывная, то . Следовательно, или .

ФОРМУЛА ТЕЙЛОРА. Пусть функция y= f(x) задана на (a, b) и x0 (a, b). Поставим следующую задачу: найти многочлен P(x), значения которого в окрестности точки x0 приближенно совпадали бы со значениями функции f(x) в соответствующих точках. Тогда можно будет считать, что f(x)≈P(x) и задачу вычисления значенийf(x) в окрестности точки x0 можно заменить более легкой задачей вычисления значений P(x). Пусть искомый многочлен имеет степень n P(x) = Pn(x). Будем искать его в виде В этом равенстве нам нужно найти коэффициенты . Для того чтобы этот многочлен был "близок" к функции f(x) потребуем выполнения следующих равенств: Пусть функция y= f(x) имеет производные до n-ого порядка.Найдем коэффициенты многочленаPn(x) исходя из условия равенства производных. Введем обозначение n!=1·2·3…n, 0! =1, 1! =1. Подставим в (1) x = x0 и найдем , но с другой стороны . Поэтому Далее найдем производную и вычислим Следовательно, .

Учитывая третье условие и то, что ,

получим , т.е. .

Далее . Значит, , т.е. . Очевидно, что и для всех последующих коэффициентов будет верна формула

Подставляя найденные значения коэффициентов в формулу (1), получим искомый многочлен:

Обозначим и назовем эту разность n-ым остаточным членом функции f(x) в точке x0. Отсюда и, следовательно, если остаточный член будет мал.

Оказывается, что если x0  (a, b) при всех x  (a, b) существует производная f (n+1)(x), то для произвольной точки x (a, b) существует точка, лежащая между x0 и x такая, что остаток можно представить в виде: Это так называемая формула Лагранжа для остаточного члена. Формула

где x  (x0, x) называется формулой Тейлора. Если в этой формуле положить x0 = 0, то она запишется в виде

где x  ( x0, x). Этот частный случай формулы Тейлора называют формулой МакЛорена.

РАЗЛОЖЕНИЕ ПО ФОРМУЛЕ МАКЛОРЕНА НЕКОТОРЫХ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ

  1. Рассмотрим функцию f(x)=ex. Представим ее по формуле МакЛорена в виде суммы многочлена и некоторого остатка. Для этого найдем производные до (n+1) порядка:

Таким образом, получаем

Используя эту формулу и придавая x различные значения, мы сможем вычислить значение ex.

Например, при x=1, ограничиваясь n=8, получим формулу, позволяющую найти приближенное значение числа e: причем остаток

Отметим, что для любого x R остаточный член

Действительно, так как ξ  (0; x), то величина eξ ограничена при фиксированном x. При x> 0 eξ < ex. Докажем, что при фиксированном x

Имеем

Если x зафиксировано, то существует натуральное число N такое, что |x|<N.

Обозначим Заметив, что 0<q<1, при n>N можем написать

Но , не зависящая от n, а так как q<1. Поэтому Следовательно,

Таким образом, при любом x, взяв достаточное число слагаемых, мы можем вычислить ex с любой степенью точности.

  1. Выпишем разложение по формуле Маклорена для функции f(x)=sin x.

Найдем последовательные производные от функции f(x)=sin x.

Подставляя полученные значения в формулу МакЛорена, получим разложение:

Несложно заметить, что преобразовав n-й член ряда, получим

.

Так как , то аналогично разложению ex можно показать, что для всех x.

Пример. Применим полученную формулу для приближенного вычисления sin 20°. При n=3 будем иметь: . Оценим сделанную погрешность, которая равна остаточному члену:

Таким образом, sin 20°= 0,342 с точностью до 0,001.

  1. f(x) = cos x. Аналогично предыдущему разложению можно вывести следующую формулу:

Здесь также для всех x. Докажите формулу самостоятельно.

  1. f(x)=ln (1+x). Заметим, что область определения этой функции D(y)=(–1; +∞).

Найдем формулу Маклорена для данной функции.

Подставим все найденные производные в ряд МакЛорена.

Можно доказать, что если x (–1;1],то , т.е. выведенная формула справедлива при x  ( –1;1].

  1. f(x) = (1+x)m, где m  R, m≠0.

При m≠Z данная функция определена при x> –1. Найдем формулу МакЛорена для этой функции:

И следовательно,

Можно показать, что при |x|<1

ПРИМЕНЕНИЕ ПРОИЗВОДНЫХ К ИССЛЕДОВАНИЮ ФУНКЦИЙ И ПОСТРОЕНИЮ ГРАФИКОВ.

НЕОБХОДИМЫЕ И ДОСТАТОЧНЫЕ УСЛОВИЯ ВОЗРАСТАНИЯ И УБЫВАНИЯ ФУНКЦИИ

Вспомним сначала определения возрастающей и убывающей функций. Функция y=f(x), определенная на некотором отрезке [a, b] (интервале (a, b)), называется возрастающей на этом отрезке, если большему значению аргумента x из [a, b] соответствует большее значение функции, то есть если x1 < x2, то f(x1) < f(x2).

Функцияy=f(x) называется убывающей на некотором отрезке [a, b], если меньшему значению аргумента x из [a, b]соответствует большее значение функции, то есть если x1 < x2, то f(x1) > f(x2).

Функция, только возрастающая или только убывающая на отрезке, называется монотонной на этом отрезке.

Функция y=f(x) называется постоянной на некотором отрезке [a, b], если при изменении аргумента x она принимает одни и те же значения.

Рассмотрим график функции изображенной на рисунке и определим промежутки возрастания и убывания функции: (-∞, a), (c, +∞) – убывает; (a, b) – постоянная; (b, c) – возрастает.

Применим понятие производной для исследования возрастания и убывания функции.

Теорема 1. (Необходимое и достаточное условия возрастания функции)

  1. Если дифференцируемая функция y=f(x) возрастает на [a, b], то ее производная неотрицательна на этом отрезке, f '(x)≥ 0.

  2. Обратно. Если функция y=f(x) непрерывна на [a, b], дифференцируема на (a, b) и ее производная положительна на этом отрезке,f ' (x)≥ 0 для a<x<b, то f(x) возрастает на[a, b].

Доказательство.

    1. Докажем первую часть теоремы. Итак, пусть функция y=f(x) возрастает на [a, b]. Зафиксируем на этом отрезке произвольную точку x, придадим ей приращение Δx. Тогда если Δx>0, то x<x+Δx. Поэтому по определению возрастающей функции f(x)<f(x+Δx), то есть f(x+Δx) - f(x)>0. Но тогда и Аналогично, если Δx<0, то x>x+Δx и значит f(x+Δx)-f(x)<0, а

Переходя в этом равенстве к пределу при Δx→0, получим , то есть f '(x)≥0.

    1. Докажем вторую часть теоремы. Пусть f '(x)>0при всех x (a,b). Рассмотрим два любых значения x1 и x2 таких, что x1 < x2. Нужно доказать, что f(x1)< f(x2). По теореме Лагранжа существует такое число c (x1, x2), что . По условию f '(x)>0, x1x2>0 , а это и значит, что f(x) – возрастающая функция.

Аналогичная теорема имеет место и для убывающих функций.

Теорема 2. Если f(x) убывает на[a,b], то на этом отрезке. Если на (a; b), то f(x) убывает на [a, b],в предположении, чтоf(x) непрерывна на [a, b].

Доказанная теорема выражает очевидный геометрический факт. Если на [a, b] функция возрастает, то касательная к кривой y=f(x) в каждой точке этого отрезке образует острый угол с осью Ox или горизонтальна, т.е. tga≥0, а значит f '(x)≥0.

Аналогично иллюстрируется и вторая часть теоремы.

Таким образом, возрастание и убывание функции характеризуется знаком ее производной. Чтобы найти на каком промежутке функция возрастает или убывает, нужно определить, где производная этой функции только положительна или только отрицательна, то есть решить неравенства f '(x)>0 – для возрастания или f '(x)<0 – для убывания.

Примеры. Определить интервалы монотонности функции.

    1. . Область определения заданной функции D(y) = (-∞; 0)(0; +∞).

. Следовательно, f(x) – убывает на (-∞; 0) и (0; +∞).

    1.  

Найдем промежутки, на которых производная заданной функции положительна или отрицательна методом интервалов.

Итак, f(x) – убывает на (–∞; –1] и [1; +∞), возрастает на отрезке [–1; 1].

    1.  

.Используя метод интервалов, получим f(x) убывает на (0; 1) и (1; e], возрастает на [e; +∞).

Э КСТРЕМУМЫ ФУНКЦИИ. Рассмотрим график непрерывной функции y=f(x), изображенной на рисунке. Значение функции в точке x1 будет больше значений функции во всех соседних точках как слева, так и справа от x1. В этом случае говорят, что функция имеет в точке x1 максимум. В точке x3 функция, очевидно, также имеет максимум. Если рассмотреть точку x2, то в ней значение функции меньше всех соседних значений. В этом случае говорят, что функция имеет в точке x2 минимум. Аналогично для точки x4.

Функция y=f(x) в точке x0 имеет максимум, если значение функции в этой точке больше, чем ее значения во всех точках некоторого интервала, содержащего точку x0, т.е. если существует такая окрестность точки x0, что для всех xx0, принадлежащих этой окрестности, имеет место неравенство f(x)<f(x0).

Функция y=f(x) имеет минимум в точке x0, если существует такая окрестность точки x0, что для всех xx0, принадлежащих этой окрестности, имеет место неравенство f(x)>f(x0.

Точки, в которых функция достигает максимума и минимума, называются точками экстремума, а значения функции в этих точках экстремумами функции.

Обратим внимание на то, что функция, определенная на отрезке, может достигать максимума и минимума только в точках, заключенных внутри рассматриваемого отрезка. Отметим, что если функция имеет в точке максимум, то это не означает, что в этой точке функция имеет наибольшее значение во всей области определения. На рисунке, рассмотренном выше, функция в точке x1 имеет максимум, хотя есть точки, в которых значения функции больше, чем в точке x1. В частности, f(x1) < f(x4) т.е. минимум функции больше максимума. Из определения максимума следует только, что это самое большое значение функции в точках, достаточно близкихк точке максимума.

Теорема 1. (Необходимое условие существования экстремума.) Если дифференцируемая функция y=f(x) имеет в точке x= x0 экстремум, то ее производная в этой точке обращается в нуль.

Доказательство. Пусть для определенности в точке x0 функция имеет максимум. Тогда при достаточно малых приращениях Δx имеем f(x0+ Δx)<f(x0), т.е. Но тогда

Переходя в этих неравенствах к пределу при Δx→ 0 и учитывая, что производная f '(x0) существует, а следовательно предел, стоящий слева, не зависит от того как Δx → 0, получаем: при Δx → 0 – 0 f'(x0) ≥ 0 а при Δx → 0 + 0 f'(x0) ≤ 0. Так как f '(x0) определяет число, то эти два неравенства совместны только в том случае, когда f '(x0) = 0.

Доказанная теорема утверждает, что точки максимума и минимума могут находиться только среди тех значений аргумента, при которых производная обращается в нуль.

Мы рассмотрели случай, когда функция во всех точках некоторого отрезка имеет производную. Как же обстоит дело в тех случаях, когда производная не существует? Рассмотрим примеры.

Примеры.

  1. y=|x|. Функция не имеет производной в точке x=0 (в этой точке график функции не имеет определенной касательной), но в этой точке функция имеет минимум, так как y(0)=0,а при всех x≠ 0y >0.

  2.   Функция не имеет производной при x=0, так как обращается в бесконечность приx=0. Но в этой точке функция имеет максимум.

  3.   Функция не имеет производной при x=0, так как при x→0. В этой точке функция не имеет ни максимума, ни минимума. Действительно, f(x)=0 и при x<0f(x)<0, а при x>0f(x)>0.

Таким образом, из приведенных примеров и сформулированной теоремы видно, что функция может иметь экстремум лишь в двух случаях: 1) в точках, где производная существует и равна нулю; 2) в точке, где производная не существует. Однако, если в некоторой точке x0 мы знаем, что f '(x0)=0, то отсюда нельзя делать вывод, что в точке x0 функция имеет экстремум.

Например. .

Но точка x=0 не является точкой экстремума, поскольку слева от этой точки значения функции расположены ниже оси Ox, а справа выше.

Значения аргумента из области определения функции, при которых производная функции обращается в нуль или не существует, называются критическими точками.

Из всего вышесказанного следует, что точки экстремума функции находятся среди критических точек, и, однако, не всякая критическая точка является точкой экстремума. Поэтому, чтобы найти экстремум функции, нужно найти все критические точки функции, а затем каждую из этих точек исследовать отдельно на максимум и минимум. Для этого служит следующая теорема.

Теорема 2. (Достаточное условие существования экстремума.) Пусть функция непрерывна на некотором интервале, содержащем критическую точку x0, и дифференцируема во всех точках этого интервала (кроме, быть может, самой точки x0). Если при переходе слева направо через эту точку производная меняет знак с плюса на минус, то в точке x = x0 функция имеет максимум. Если же при переходе через x0 слева направо производная меняет знак с минуса на плюс, то функция имеет в этой точке минимум. Таким образом, если

  1. f '(x)>0 при x<x0 и f '(x)<0 при x> x0, то x0 – точка максимума;

  2. при x<x0 и f '(x)>0 при x> x0, то x0 – точка минимума.

Доказательство. Предположим сначала, что при переходе через x0 производная меняет знак с плюса на минус, т.е. при всех x, близких к точке x0 f '(x)>0 для x< x0, f '(x)<0 для x> x0. Применим теорему Лагранжа к разности f(x) - f(x0) = f '(c)(x- x0), где c лежит между x и x0.

  1. Пусть x < x0. Тогда c< x0 и f '(c)>0. Поэтомуf '(c)(x- x0)<0и, следовательно,

f(x) - f(x0)<0,т.е. f(x)< f(x0).

  1. Пусть x > x0. Тогда c> x0 и f '(c)<0. Значитf '(c)(x- x0)<0. Поэтому f(x) - f(x0)<0,т.е.f(x) < f(x0).

Таким образом, для всех значений x достаточно близких к x0 f(x) < f(x0). А это значит, что в точке x0 функция имеет максимум.

Аналогично доказывается вторая часть теоремы о минимуме.

Проиллюстрируем смысл этой теоремы на рисунке. Пусть f '(x1)=0 и для любых x, достаточно близких к x1, выполняются неравенства

f '(x)<0 при x< x1, f '(x)>0 при x> x1.

Тогда слева от точки x1 функция возрастает, а справа убывает, следовательно, при x = x1 функция переходит от возрастания к убыванию, то есть имеет максимум.

Аналогично можно рассматривать точки x2 и x3.

Схематически все вышесказанное можно изобразить на картинке:

Правило исследования функции y=f(x) на экстремум

  1. Найти область определения функции f(x).

  2. Найти первую производную функции f '(x).

  3. Определить критические точки, для этого:

    1. найти действительные корни уравнения f '(x)=0;

    2. найти все значения x при которых производная f '(x) не существует.

  4. Определить знак производной слева и справа от критической точки. Так как знак производной остается постоянным между двумя критическими точками, то достаточно определить знак производной в какой-либо одной точке слева и в одной точке справа от критической точки.

  5. Вычислить значение функции в точках экстремума.

Примеры. Исследовать функции на минимум и максимум.

  1. . Область определения функции D(y)=R.

Найдем производную заданной функции

Определим критические точки . Производная не существует при х2= 0. Следовательно, критические точки: 0 и 2/5. Нанесем их на числовую ось и определим знак производной на каждом из полученных промежутков.

  1.  

Критическая точка функции x =3. Точка x= –1 не входит в область определения функции.

НАИБОЛЬШЕЕ И НАИМЕНЬШЕЕ ЗНАЧЕНИЯ ФУНКЦИИ НА ОТРЕЗКЕ. Наибольшим значением функции на отрезке называется самое большое из всех ее значений на этом отрезке, а наименьшим – самое маленькое из всех ее значений.

Рассмотрим функцию y=f(x) непрерывную на отрезке [a, b]. Как известно, такая функция достигает своего наибольшего и наименьшего значений, либо на границе отрезка, либо внутри него. Если наибольшее или наименьшее значение функции достигается во внутренней точке отрезка, то это значение является максимумом или минимумом функции, то есть достигается в критических точках.

Таким образом, получаем следующее правило нахождения наибольшего и наименьшего значений функции на отрезке[a, b]:

  1. Найти все критические точки функции в интервале (a, b) и вычислить значения функции в этих точках.

  2. Вычислить значения функции на концах отрезка при x = a, x = b.

  3. Из всех полученных значений выбрать наибольшее и наименьшее.

Примеры.

  1. Найти наибольшее и наименьшее значения функции на отрезке [–2; –0,5].

Найдем критические точки функции.

Вычислим значения функции в найденной точке и на концах заданного отрезка.

Итак,

  1. Найти наибольшее и наименьшее значения функцииy=x-2·ln x на [1; e].

  1. Чему равна наименьшая площадь боковой поверхности прямого кругового конуса объема 3π?

По теореме Пифагора .

Следовательно, .

.

Найдем критические точки функции S: S' = 0, т.е.

Покажем, что при найденном значении h функция Sбок достигает минимума.

.

  1.   Найти радиус основания и высоту цилиндра наибольшего объема, который можно вписать в шар радиусом R.

Пусть r – радиус основания цилиндра, h – высота.

Нам нужно максимизировать объем цилиндра .

Используя условие задачи, найдем связь между r и h. По теореме Пифагора из треугольника ABC следует, что . Отсюда .

, по смыслу задачи 0≤h≤2R.

.

Покажем, что при найденном значении h функция V принимает наибольшее значение.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]