Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теоретическая механика пособие Носова В.Н..doc
Скачиваний:
46
Добавлен:
16.11.2019
Размер:
18.82 Mб
Скачать

§ 2. Вынужденные колебания системы с учётом линейно-вязкого трения.

Для малых колебаний системы около устойчивого положения равновесия выражения для кинетической энергии, потенциальной энергии и диссипативной функции имеют вид;

где -положительные постоянные. Будем предполагать, что обобщённая сила является заданной функцией времени. Дифференциальное уравнение вынужденных колебаний будет линейным, неоднородным уравнением с постоянными коэффициентами

.

При введённых ранее обозначениях оно примет вид

(5.18)

Общий интеграл дифференциального уравнения (5.18), как известно, является суммой общего интеграла соответствующего однород­ного уравнения, т. е. уравнения свободных колебаний, и какого-либо частного решения уравнения (5.18): , причем, в зависимости от значений коэффициентов n и k получим соответствующие решения. В случае произвольной функции решение ищется методом вариации произвольных постоянных. Здесь же ограничимся случаем, когда гармоническая функция . Уравнение (3.68) примет вид

,

где . Будем искать частное решение в форме

.

Тогда

Подстановка в дифференциальное уравнение даёт

Откуда получаем два уравнении для неизвестных А и В:

Решив эти уравнения, имеем:

Полагая

Получим , где

. (5.16)

Общее решение можно теперь записать в таком виде

.

- решение однородного уравнения в форме (5.11),(5.12) или (5.13), и, как было выше показано, оно при затухает, остаются только вынужденные колебания. Поэтому в установившемся режиме можно не учитывать.

§ 3. Динамические характеристики вынужденных колебаний.

Определим зависимость амплитуды вынужденных колебаний в функции от частоты вынужденных колебаний и фазу . Для этого введём безразмерные коэффициенты (коэффициент расстройки), (безразмерный коэффициент сопротивления) и коэффициент динамичности , где (отклонение системы от положения равновесия под действием постоянной силы H . Тогда, вынося из под корня в первой формуле (5.16), можно записать

Рассматривая μ как параметр, построим график . Сразу видно из приведённой формулы, что , Обозначим подкоренное выражение в знаменателе как , вычислим производную по z и приравняем её нулю. Максимуму соответствует минимум функции

.

Итак, если и , то функция имеет экстре

мум, причём второе значение имеет место лишь при . Зави

симость , при различных значениях параметра μ , представлен на графике рис ; для параметр μ=0.707.

Рис 63

Для построения графика преобразуем вторую формулу (5.16) к виду . Зависимость , при различных значениях параметра μ , представлен на графике (рис 64).

Рис 64

РАЗДЕЛ ШЕСТОЙ

Некоторые задачи статики и динамики точки и твёрдого тела.

__________________________________________________________