Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Полная методичка без 4 стр.doc
Скачиваний:
26
Добавлен:
10.11.2019
Размер:
1.94 Mб
Скачать

Варианты задания

Вариант №1,12 Вариант №2,13

Вариант №3,14 Вариант №4,15

Вариант №5,16 Вариант №6,17

Вариант №7,18 Вариант №8,19

Вариант №9,20 Вариант №10,21

Вариант №11,22

7 Содержание отчета

1. Цель работы.

2. Краткие теоретические сведения о методах численного решения СЛАУ, граф-схемы алгоритмов.

3. Листинги разработанных программ.

4. Таблицы результатов численного решения СЛАУ с указанием количества итераций для каждого метода при заданной точности решения.

5. Выводы по лабораторной работе, подтвержденные данными таблицы, графиками и расчётами, сравнительные характеристики методов.

8 Контрольные вопросы

1. Дать определение СЛАУ. Какие СЛАУ называются вырожденными? Какие СЛАУ называются плохо обусловленными?

2. Перечислите известные Вам численные методы решения СЛАУ.

3. Чем отличаются прямые (конечные) методы от итерационных (бесконечных) методов решения СЛАУ?

4. При каких условиях сходится (расходится) итерационный процесс метода Гаусса-Зейделя.

5. Расскажите, чем отличается метод Якоби от метода Гаусса-Зейделя.

6. Ранжируйте численные методы решения СЛАУ по скорости сходимости итерационного процесса к решению системы.

7. Нарисуйте блок-схемы алгоритмов методов решения СЛАУ.

Лабораторная работа №2

ЧИСЛЕННЫЕ МЕТОДЫ ВЫЧИСЛЕНИЯ

ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ

Пусть функция f(х) задана на некотором отрезке [а; b]. Рассмотрим задачу вычисления ее определенного интеграла . Если для f(х) известна первообразная F(х), то интеграл может быть вычислен точно по основной формуле интегрального исчисления — формуле Ньютона-Лейбница:

.

Однако первообразная лишь для узкого класса функций выражается через элементарные функции, причем нередко ее отыскание связано с очень громоздкими вычислениями. Кроме того, возможна ситуация, когда подынтегральная функция задана не аналитически, а таблично или графически. Поэтому для вычисления определенного интеграла часто приходится прибегать к различным приближенным формулам. Довольно просто эти формулы можно получить, исходя из геометрического смысла определенного интеграла:

если на [а; b], то – площадь криволинейной трапеции, ограниченной отрезком [а; b] оси Оx, кривой y=f(x) и прямыми x=a, x=b.

При приближенном вычислении криволинейную трапецию заменяют фигурой, площадь Sn которой вычисляется довольно просто. При этом фигура ограничена тем же отрезком [а; b]. Отсюда получают приближенную формулу

.

Цель лабораторной работы –

изучить:

  • особенности численных методов интегрирования, в том числе метод интегрирования Гаусса;

  • методические погрешности для каждого метода;

  • вопрос о целесообразности увеличения числа интервалов интегрирования с учетом суммарной погрешности округления и ограничения;

  • граф-схемы алгоритмов численного интегрирования методами прямоугольников, трапеций, Симпсона и Гаусса.

В результате проведения лабораторной работы студенты должны

знать:

  • особенности применения и алгоритмы реализации различных методов численного интегрирования;

  • влияние шага интегрирования на величину методической погрешности, погрешности округления и суммарной погрешности;

  • методы повышения точности интегрирования за счет применения квадратурных формул гауссового типа.

уметь: выбирать и реализовывать методы численного интегрирования в соответствии с поставленной задачей, с требуемой точностью и трудоемкостью реализации алгоритмов вычислений.