Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
математика экзамен!.docx
Скачиваний:
20
Добавлен:
28.09.2019
Размер:
572.01 Кб
Скачать

24. Геометрия. Основные объекты

Геоме́трия (от др.-греч. γῆ — Земля и μετρέω — «мерю») — раздел математики, изучающий пространственные структуры, отношения и их обобщения.Содержание

Классификация

Общепринятую в наши дни классификацию различных разделов геометрии предложил Феликс Клейн в своей «Эрлангенской программе» (1872). Согласно Клейну, каждый раздел изучает те свойства геометрических объектов, которые сохраняются (инвариантны) при действии некоторой группы преобразований, специфичной для каждого раздела. В соответствии с этой классификацией, в классической геометрии можно выделить следующие основные разделы.

Евклидова геометрия, в которой предполагается, что размеры отрезков и углов при перемещении фигур на плоскости не меняются. Другими словами, это теория тех свойств фигур, которые сохраняются при их переносе, вращении и отражении.

Планиметрия — раздел евклидовой геометрии, исследующий фигуры на плоскости.

Стереометрия — раздел евклидовой геометрии, в котором изучаются фигуры в пространстве.

Проективная геометрия, изучающую проективные свойства фигур, то есть свойства, сохраняющиеся при их проективных преобразованиях. Инварианты в этой геометрии — это свойства, сохраняющиеся при замене фигур на подобные им, но другого размера.

Аффинная геометрия, использующая очень общие аффинные преобразования. В ней длины и величины углов не имеют существенного значения, но прямые переходят в прямые.

Начертательная геометрия — инженерная дисциплина, в основе которой лежит метод проекций. Этот метод использует две и более проекций (ортогональных или косоугольных), что позволяет представить трехмерный объект на плоскости.

Современная геометрия включает в себя следующие дополнительные разделы.

Многомерная геометрия.

Неевклидовы геометрии.

Сферическая геометрия.

Геометрия Лобачевского.

Риманова геометрия.

Геометрия многообразий.

Топология — наука о непрерывных преобразованиях самого общего вида, то есть свойства объектов, которые остаются неизменными при непрерывных деформациях. В топологии не рассматриваются никакие метрические свойства объектов.

По используемым методам выделяют также такие инструментальные подразделы.

Аналитическая геометрия — геометрия координатного метода. В ней геометрические объекты описываются алгебраическими уравнениями в декартовых (иногда аффинных) координатах и затем исследуются методами алгебры и анализа.

Дифференциальная геометрия — изучает линии и поверхности, задающиеся дифференцируемыми функциями, с помощью дифференциальных уравнений.

Традиционно считается, что родоначальниками геометрии как систематической науки являются древние греки, перенявшие у египтян ремесло землемерия и измерения объёмов тел и превратившие его в строгую научную дисциплину. При этом античные геометры от набора рецептов перешли к установлению общих закономерностей, составили первые систематические и доказательные труды по геометрии. Центральное место среди них занимают составленные около 300 до н. э. «Начала» Евклида. Этот труд более двух тысячелетий считался образцовым изложением в духе аксиоматического метода: все положения выводятся логическим путём из небольшого числа явно указанных и не доказываемых предположений — аксиом.

Геометрия греков, называемая сегодня евклидовой, или элементарной, занималась изучением простейших форм: прямых, плоскостей, отрезков, правильных многоугольников и многогранников, конических сечений, а также шаров, цилиндров, призм, пирамид и конусов. Вычислялись их площади и объёмы. Преобразования в основном ограничивались подобием.

Средние века немного дали геометрии, и следующим великим событием в её истории стало открытие Декартом в XVII веке координатного метода («Рассуждение о методе», 1637). Точкам сопоставляются наборы чисел, это позволяет изучать отношения между формами методами алгебры. Так появилась аналитическая геометрия, изучающая фигуры и преобразования, которые в координатах задаются алгебраическими уравнениями. Примерно одновременно с этим Паскалем и Дезаргом начато исследование свойств плоских фигур, не меняющихся при проектировании с одной плоскости на другую. Этот раздел получил название проективной геометрии. Метод координат лежит в основе появившейся несколько позже дифференциальной геометрии, где фигуры и преобразования все ещё задаются в координатах, но уже произвольными достаточно гладкими функциями.

Ф. Клейн в «Эрлангенской программе» систематизировал все виды однородных геометрий; согласно ему геометрия изучает все те свойства фигур, которые инвариантны относительно преобразований из некоторой группы. При этом каждая группа задаёт свою геометрию. Так, изометрии (движения) задаёт евклидову геометрию, группа аффинных преобразований — аффинную геометрию.

Построение с помощью циркуля и линейки

[править]

Материал из Википедии — свободной энциклопедии

Перейти к: навигация, поиск

Построения с помощью циркуля и линейки — раздел евклидовой геометрии, известный с античных времён. В задачах на построение циркуль и линейка считаются идеальными инструментами, в частности:

Линейка не имеет делений и имеет только одну сторону бесконечной длины.

Циркуль может иметь сколь угодно большой или сколь угодно малый раствор.Содержание [убрать]

1 Пример

2 Формальное определение

3 Известные задачи

3.1 Построение правильных многоугольников

3.2 Неразрешимые задачи

4 Возможные и невозможные построения

5 Вариации и обобщения

6 Интересные факты

7 См.также

8 Примечания

9 Литература

Разбиение отрезка пополам

Задача на бисекцию. С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

Циркулем проводим окружности с центром в точках A и B радиусом AB.

Находим точки пересечения P и Q двух построенных окружностей (дуг).

По линейке проводим отрезок или линию, проходящую через точки P и Q.

Находим искомую середину отрезка AB - точку пересечения AB и PQ.

Формальное определение

В задачах на построение рассматриваются множество всех точек плоскости, множество всех прямых плоскости и множество всех окружностей плоскости, над которыми допускаются следующие операции:

Выделить точку из множества всех точек:

произвольную точку

произвольную точку на заданной прямой

произвольную точку на заданной окружности

точку пересечения двух заданных прямых

точки пересечения/касания заданной прямой и заданной окружности

точки пересечения/касания двух заданных окружностей

«С помощью линейки» выделить прямую из множества всех прямых:

произвольную прямую

произвольную прямую, проходящую через заданную точку

прямую, проходящую через две заданных точки

«С помощью циркуля» выделить окружность из множества всех окружностей:

произвольную окружность

произвольную окружность с центром в заданной точке

произвольную окружность с радиусом, равным расстоянию между двумя заданными точками

окружность с центром в заданной точке и с радиусом, равным расстоянию между двумя заданными точками

В условиях задачи задается некоторое множество точек. Требуется с помощью конечного количества операций из числа перечисленных выше допустимых операций построить другое множество точек, находящееся в заданном соотношении с исходным множеством.

Решение задачи на построение содержит в себе три существенные части:

Описание способа построения заданного множества.

Доказательство того, что множество, построенное описанным способом, действительно находится в заданном соотношении с исходным множеством. Обычно доказательство построения производится как обычное доказательство теоремы, опирающееся на аксиомы и другие доказанные теоремы.

Анализ описанного способа построения на предмет его применимости к разным вариантам начальных условий, а также на предмет единственности или неединственности решения, получаемого описанным способом.

[править]

Известные задачи

Задача Аполлония о построении окружности, касающейся трех заданных окружностей. Если ни одна из заданных окружностей не лежит внутри другой, то эта задача имеет 8 существенно различных решений.

Задача Брахмагупты о построении вписанного четырехугольника по четырем его сторонам.

[править]

Построение правильных многоугольников

Основная статья: Теорема Гаусса — Ванцеля

Построение правильного пятиугольника

Античным геометрам были известны способы построения правильных n-угольников для , , и .

В 1796 году Гаусс показал возможность построения правильных n-угольников при , где — различные простые числа Ферма. В 1836 году Ванцель доказал, что других правильных многоугольников, которые можно построить циркулем и линейкой, не существует.

[править]

Неразрешимые задачи

Следующие три задачи на построение были поставлены ещё в античности:

Трисекция угла — разбить произвольный угол на три равные части.

Удвоение куба — построить ребро куба вдвое большего по объёму, чем данный куб

Квадратура круга — построить квадрат, равный по площади данному кругу.

Только в XIX веке было доказано, что все три задачи неразрешимы при использовании только циркуля и линейки. Вопрос возможности построения полностью решён алгебраическими методами, основанными на теории Галуа.

Другая известная неразрешимая с помощью циркуля и линейки задача — построение треугольника по трём заданным длинам биссектрис.[1] Причём эта задача остаётся неразрешимой даже при наличии трисектора.[2]

Разбиение отрезка пополам

Построение правильного пятиугольника