Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
EKZAMEN_PO_ELEKTROTEKhNIKE.docx
Скачиваний:
16
Добавлен:
27.09.2019
Размер:
1.93 Mб
Скачать

42) Точки а,в,с – начала обмоток генератора; точки х, y, z – концы обмоток генератора. Точка, где соединяются концы обмоток генератора, называется нейтральной (n).

Провода АА1, ВВ1, СС1 называются линейными, провод NN1 называется нейтральным.

Напряжения между двумя линейными проводами называются линейными (UAB, UBC, UCA).

Напряжения между нейтральным проводом и любым линейным называются фазными (UA, UB, UC).

Исходя из физического смысла напряжения – это разность потенциалов между двумя точками, для фазных напряжений можно записать:

UA = jA - jХ UB = jB - jY UC = jC - jZ

Аналогично для линейных напряжений:

UAB = UA – UB = jA - jХ - jB + jY = jA - j

UВС = UВ – UС = jВ - jY - jC + jZ = jB - j

UCA = UC – UA = jC - jZ - jA + jХ = jС - jА

Построение векторной диаграммы – это диаграмма, на которой указываются только напряжения: откладываем тройку векторов фазных напряжений под углом 1200 друг к другу аналогично тому, как откладывали ЭДС. Если соединить концы построенных векторов, то получим линейные напряжения. Причем направления векторов от начальной точки к конечной, например, если напряжение UAB, то вектор должен быть направлен от точки А к точке В и т.д. Тогда сумма линейных напряжений будет равна нулю.

IЛ = IФ - основные соотношения для соединения «звезда»

Алгебраическая сумма линейных напряжений всегда равна нулю:

UAB + UBC + UCA = UA – UB + UВ – UС + UC – UA = 0

43) Четырехпроводная цепь

Для расчета трехфазной цепи применимы все методы, используемые для расчета линейных цепей. Обычно сопротивления проводов и внутреннее сопротивление генератора меньше сопротивлений приемников, поэтому для упрощения расчетов таких цепей (если не требуется большая точность) сопротивления проводов можно не учитывать (ZЛ = 0, ZN = 0). Тогда фазные напряжения приемника Ua, Ub и Uc будут равны соответственно фазным напряжениям источника электрической энергии(генератора или вторичной обмотки трансформатора), т.е. Ua = UA; Ub = UB; Uc = UC. Если полные комплексные сопротивления фаз приемника равны Za = Zb = Zc, то токи в каждой фазе можно определить по формулам

(3.10)

İa = Úa / Za; İb = Úb / Zb; İc = Úc / Zc.

В соответствии с первым законом Кирхгофа ток в нейтральном проводе

(3.11)

İN = İa + İb + İc = İA + İB + İC. Трехпроводная электрическая цепь

Схема соединения источника и приемника звездой без нейтрального провода приведена на рис. 3.10.

Рис. 3.10

При симметричной нагрузке, когда Za = Zb = Zc = Zφ, напряжение между нейтральной точкой источника N и нейтральной точкой приемника n равно нулю, UnN = 0.

Соотношение между фазными и линейными напряжениями приемника также равно , т.е. UФ = UЛ / , а токи в фазах определяются по тем же формулам (3.12, 3.13), что и для четырехпроводной цепи. В случае симметричного приемника достаточно определить ток только в одной из фаз. Сдвиг фаз между током и соответствующим напряжением φ = arctg (X / R).

При несимметричной нагрузке Za ≠ Zb ≠ Zc между нейтральными точками приемника и источника электроэнергии возникает напряжение смещения нейтрали UnN.

Для определения напряжения смещения нейтрали можно воспользоваться формулой межузлового напряжения, так как схема рис 3.10 представляет собой схему с двумя узлами,

(3.14)

,

где: Ya = 1 / Za; Yb = 1 / Zb; Yc = 1 / Zc – комплексы проводимостей фаз нагрузки.

Очевидно, что теперь напряжения на фазах приемника будут отличаться друг от друга. Из второго закона Кирхгофа следует, что

(3.15)

Úa = ÚA - ÚnN; Úb = ÚB - ÚnN; Úc = ÚC - ÚnN.

Зная фазные напряжения приемника, можно определить фазные токи:

(3.16)

İa = Úa / Za = Ya Úa; İb = Úb / Zb = Yb Úb; İc = Úc / Zc = Yc Úc.

Векторы фазных напряжений можно определить графически, построив векторную (топографическую) диаграмму фазных напряжений источника питания и UnN (рис. 3.11).

При изменении величины (или характера) фазных сопротивлений напряжение смещений нейтрали UnN может изменяться в широких пределах. При этом нейтральная точка приемника n на диаграмме может занимать разные положения, а фазные напряжения приемника Úa, Úb и Úc могут отличаться друг от друга весьма существенно.

Таким образом, при симметричной нагрузке нейтральный провод можно удалить и это не повлияет на фазные напряжения приемника. При несимметричной нагрузке и отсутствии нейтрального провода фазные напряжения нагрузки уже не связаны жестко с фазными напряжениями генератора, так как на нагрузку воздействуют только линейные напряжения генератора. Несимметричная нагрузка в таких условиях вызывает несимметрию ее фазных напряжений Úa, Úb, Úc и смещение ее нейтральной точки n из центра треугольника напряжений (смещение нейтрали).

Рис. 3.11

Направление смещения нейтрали зависит от последовательности фаз системы и характера нагрузки.

Поэтому нейтральный провод необходим для того, чтобы:

выравнивать фазные напряжения приемника при несимметричной нагрузке;

подключать к трехфазной цепи однофазные приемники с номинальным напряжением в раз меньше номинального линейного напряжения сети.

Следует иметь в виду, что в цепь нейтрального провода нельзя ставить предохранитель, так как перегорание предохранителя приведет к разрыв

44) При соединении треугольником соединяют конец первой фазовой обмотки U2 с началом второй фазовой обмотки V1, её конец соединяют с началом третьей обмотки W1, а конец третьей обмотки соединяют с началом первой обмотки U1.

Три обмотки генератора образуют теперь замкнутую цепь с очень маленьким сопротивлением. Но короткого замыкания там не получится, т.к. сумма ЭДС будет равна нулю.

Линейные напряжения в случае соединения треугольником равны фазовым напряжениям: U1 = U12, U2 = U23, U3 = U31 соответственно, т.е.Uф =Uл.

Главное, что надо иметь в виду, чтобы обмотки генератора или трансформатора были соединены правильно. Если одна из фазовых обмоток соединена наоборот, тогда сумма ЭДС в цепи не будет равна нулю, а сравняется с двукратным фазным напряжением.

Потребители соединяются треугольником, если их рабочее напряжение равно линейному напряжению. Существуют два вида изображений на схемах: потребители расположены под углом 120˚ или параллельно друг другу.

45) Каждую фазу нагрузки в трехфазной цепи можно рассматривать как цепь однофазного переменного тока. Соотношения для мгновенной, активной, реактивной, полной и комплексной мощностей ранее были получены.

Мгновенные мощности фаз можно определить согласно выражению:

Тогда получим

где - активная мощность одной фазы, а P - суммарная активная мощность нагрузки. Получаем вывод: суммарная мгновенная мощность симметричной трехфазной цепи не изменяется во времени и равна суммарной активной мощности всей цепи.

Реактивная и полная мощности определяются так:

Через линейные токи и напряжения мощности могут быть определены:

При несимметричной нагрузке суммарные мощности определяются как алгебраические суммы мощностей отдельных фаз. Активная мощность трехфазного приемника равна сумме активных мощностей фаз и аналогично для реактивной. Полная мощность трехфазной цепи будет равна:

46) Однофазный трансформатор применяется в однофазной цепи переменного тока. Трансформатор состоит: из замкнутого сердечника, собранного из листовой трансформаторной стали, на котором располагаются две или несколько обмоток - изолированного провода. Обмотки, подключаемые к источнику тока, называется первичной, а обмотка, с которой снимается напряжение - вторичной. У трехобмоточного трансформатора имеются две вторичные обмотки, что дает возможность получить два различных напряжения. Сердечник делается из листов электротехнической стали толщиной 0,35 мм - 0,5 мм и служит магнитопроводом трансформатора. Для уменьшения вихревых токов, а следовательно, и потерь в стали листы сердечника изолируются лаком.

В зависимости от формы сердечника однофазные трансформаторы бывают стержневые и броневые. В стержневом трансформаторе магнитопровод имеет форму замкнутого прямоугольника (рис.3.1), а первичная и вторичная обмотка надеты на оба стержня; причем одна половина обмотки - на одном стержне, а другая половина - на другом. Обмотка с меньшим числом витков толстого провода размещается ближе к сердечнику и обозначается на схемах НН (низшее напряжение), поверх нее наматывается обмотка с большим числом витков толстого провода и обозначается на схемах ВН (высшее напряжение). Намотка обмоток на обоих стержнях проводиться так, чтобы их магнитные потоки складывались, т. е. если в обмотке на первом стержне намотка идет по часовой стрелке, то на второй против.

В броневом трансформаторе первичные вторичные обмотки находятся на стержне магнитопровода, который разветвляется и охватывает обмотки. Обмотка броневого трансформатора выполняется так же, как и стержневого, или в виде дисковой катушки, где чередуются диски высшего и низшего напряжения.

47) В зависимости от величины сопротивления нагрузки трансформатор может работать в трех режимах:

1. Холостой ход при сопротивлении нагрузки zн = ∞.

2. Короткое замыкание при zн = 0.

3. Нагрузочный режим при 0 < zн < ∞.

Имея параметры схемы замещения, можно анализировать любой режим работы трансформатора. Сами параметры определяют на основе опытов холостого хода и короткого замыкания. При холостом ходе вторичная обмотка трансформатора является разомкнутой.

Опыт холостого хода трансформатора проводят для определения коэффициента трансформации, мощности потерь в стали и параметров намагничивающей ветви схемы замещения, проводят его обычно при номинальном напряжении первичной обмотки.

Для определения напряжения короткого замыкания, потерь в обмотках и сопротивлений rк и xк проводят опыт короткого замыкания. При этом к первичной обмотке подводят такое пониженное напряжение, чтобы токи обмоток короткозамкнутого трансформатора были равны своим номинальным величинам, т. е. I1к = I1н, I2к = I2н. Напряжение на первичной обмотке, при котором отмеченные условия выполняются, называется номинальным напряжением короткого замыкания Uкн.

В нагрузочном режиме очень важно знать, как влияют параметры нагрузки на КПД и изменение напряжения на зажимах вторичной обмотки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]