Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВМС - ответы.doc
Скачиваний:
163
Добавлен:
27.09.2019
Размер:
3.87 Mб
Скачать

55. Способы осуществления процессов полимеризации. Полимеризация в массе, в растворе, в дисперсных системах

ПОЛИМЕРИЗАЦИЯ В РАСТВОРЕ, способ проведения полимеризации, при котором исходный мономер находится в жидкой фазе в растворенном состоянии. Реакц. система может быть гомогенной или гетерогенной в зависимости от раствори-мости катализатора и образующегося полимера в реакционное среде. Растворитель должен быть инертен к мономеру и возбудителю полимеризации; чаще всего это алифатич. или арома-тич. углеводороды. Температуру можно изменять в пределах, в которых мономер и растворитель остаются жидкими. Например, катионную полимеризацию изобутилена в растворе осуществляют при -1000C. Процессы при высоких температурах часто проводят при избыточном давлении, чтобы воспрепятствовать кипению реакционное смеси. Концентрацию мономера в растворе изменяют в широких пределах.

Гомогенная ПОЛИМЕРИЗАЦИЯ В РАСТВОРЕ в р. описывается классич. уравениями кинетики полимеризации. При гетерог. процессе возможны диффузионные затруднения, связанные с поступлением мономера к активным центрам.

В промышленности методом ПОЛИМЕРИЗАЦИЯ В РАСТВОРЕ в р. осуществляют все процессы ионной и большую часть процессов координационно-ионной полимеризации, например синтез стереорегулярных каучуков, полиэтилена низкого давления, полипропилена, сополимеров этилена с пропиленом, термоэластопластов, полиизо-бутилена, полиформальдегида. Радикальная полимеризация в растворе экономически менее выгодна, чем в массе или дисперсных водных средах, поэтому ее применяют только в тех случаях, когда конечный продукт используют в виде раствора (лак, клей) или когда др. способами нельзя получить требуемый полимер (например, полиакрилаты, поливинилаце-тат, пенополистирол, политетрафторэтилен).

В промышленности ПОЛИМЕРИЗАЦИЯ В РАСТВОРЕ в р. проводят в аппаратах, снабженных мешалками, циркуляц. насосами или др. перемешивающими устройствами, реже - в аппаратах трубчатого или колонного типа, непрерывные процессы - обычно в каскадах последовательно соединенных проточных реакторов смешения. Мономеры, кроме газообразных, смешивают с растворителями в спец. смесителях (и газообразные вводят непосредственно в реактор). Тепловой режим процесса регулируют путем теплообмена через рубашку аппарата, а также предварит. охлаждением растворителя и мономера. При больших реакционное объемах внутрь аппаратов встраивают дополнительной охлаждающие устройства (змеевики, трубчатки, полые плиты). Эффективный теплоотвод и точное поддержание заданной температуры процесса можно осуществить за счет испарения части растворителя из реакционное зоны при его кипении. После конденсации в выносном холодильнике растворитель возвращают в реактор.

После завершения реакции растворители удаляют испарением под вакуумом или перегонкой с водяным паром. Следы катализатора нейтрализуют. Полимер высушивают под вакуумом или в кипящем слое.

Достоинства ПОЛИМЕРИЗАЦИЯ В РАСТВОРЕ в р.: можно тонко регулировать концентрации реагентов, температуру, структуру и состав гомо- и сополимеров, получать высоковязкие полимеры. Недостатки: необходимость выделения и сушки образующегося полимера, значительной капитальные вложения и затраты энергии, обусловленные циркуляцией и регенерацией больших кол-в растворителя.

При синтезе полиолефинов на координационно-ионных катализаторах с методом ПОЛИМЕРИЗАЦИЯ В РАСТВОРЕ в р. стал конкурировать газофазный процесс, в котором отсутствуют стадии нейтрализации катализатора, отделения и подготовки растворителя, сушки полимера.

В лабораторная практике ПОЛИМЕРИЗАЦИЯ В РАСТВОРЕ в р. широко используют для изучения кинетическая закономерностей и механизмов.

Дисперсионная полимеризация в неводных средах

Другим типом полимерных дисперсий, используемых в технологии покрытий, являются неводные дисперсии, которые внешне имеют много сходных свойств с эмульсионнымиполимерами в водной среде. В этом случае полимер, обычно акриловый, диспергирован в неводнои среде, чаще всего в алифатическом углеводороде . Наиболее эффективные стабилизаторы, используемые при дисперсионнойполимеризации, получены на основе блок или привитых сополимеров . Подобные привитые стабилизаторы на основе поли 12 гидроксистеариновой кислоты легко получаются и эффективны в неводной дисперсионной полимеризации, протекающей как по цепному, так и по ступенчатому механизмам. Промышленная 12 гидроксистеариновая кислота содержит 8—15% пальмитиновой и стеариновой кислот, которые ограничивают молекулярную массу при поликонденсации, что приводит к образованию полимера со средне численной молекулярной массой 1500—2000, содержащего одну карбоксильную группу. Такой олигомер может быть превращен в «макромономер» при реакции карбоксильной группы с глицидил метакрилатом и этот «макромономер» затем подвергнут сополимеризации с равным по массе количеством метилметакрилата или аналогичного мономера с образованием полимера с молекулярной массой 10—20 тыс. Такойполимер затем служит как гребнеобразный стабилизатор, в котором имеются 5—10 растворимых боковых цепей, отходящих от закрепленной главной цепи макромолекулы . Образование привитого полимера и способ стабилизации дисперсных частиц вследствие адсорбции нерастворимой прикрепляемой части полимера схематически показаны на рисунке 2.3. Производные поли 12 гидроксистеариновой кислоты также применяются как диспергирующие вещества . Полимеризацией в неводных дисперсиях можно получить практически все полимеризационные пленкообразователи. Даже мономеры, которые трудно полимеризуются в растворе, могут быть легко заполимеризованы в дисперсии (так же как и в случае водоэмульсионной полимеризации). Основное ограничение для применяемых мономеров заключается в том, чтобы образующийся полимер был не растворим в используемой среде. Так, если средой являются алифатические углеводороды, количество используемого инноцепного пластифицирующего мономера должно быть ограничено. Поскольку полимеризация почти полностью происходит внутри частиц, состоящих из набухшего в мономере полимера, скорость полимеризации намного больше по сравнению с полимеризацией в растворе из за уменьшения диффузион но контролируемой скорости обрыва. Подобно эмульсионной полимеризации, неводные дисперсии получают обычно в 2 стадии. На стадии затравки разбавитель вместе с частью диспергатора и мономера нагревают в присутствии инициатора с образованием исходной тонкой дисперсии с низкой концентрацией. Затем в течение нескольких часов загружают оставшийся мономер, диспергатор и инициатор для завершения роста частиц. Для контроля молекулярной массы обычно добавляют небольшое количество агента передачи цепи. В зависимости от температуры реакции, инициаторами могут быть либо азо , либо пероксидные соединения. Как и в случае эмульсионной полимеризации, на качество дисперсии может отрицательно влиять способ подпитки мономером, хотя, в отличие от эмульсионной полимеризации, мономер полностью растворим в непрерывной фазе. Обычно процесс проводят при рециркуляции разбавителя и рекомендуют смешивать дополнительно вводимый мономер с возвратным охлажденным дистиллятом. Возможны также непрерывные методы получения. Этот метод позволяет очень хорошо контролировать размер частиц и при правильно выбранном диспергаторе и его распределении между двумя стадиями можно легко получить дисперсии с частицами одного размера, гораздо легче, чем при эмульсионной полимеризации. Подобно этому, используя соответствующие способы регулирования, можно получить частички различных размеров, способные к более эффективной упаковке, что позволяет готовить дисперсии с высоким сухим остатком, вплоть до 85% (объемн.) . Неводные дисперсии акриловых полимеров находят применение в автомобильных термоотверждаемыхлакокрасочных материалах; в этом случае в исходную смесь мономеров включают гидроксилсодержащие мономеры. К полученной полимерной дисперсии можно добавить более сильный растворитель для растворения части или всего диспергированного полимера. Таким образом можно готовить широкий ряд композиций, от таких, в которых полимернаходится в истинном растворе или в виде набухшего в растворителе геля, до устойчивых ненабухших частичек полимера. Неводные дисперсии этого типа применяются потому, что присутствие набухшего нерастворимого полимера оказывает сильное влияние на скорость испарения растворителей и на скорость повышения вязкости в процессе испарения. Эти эффекты позволяют регулировать в широких пределах толщину покрытий при нанесении распылением, уменьшить образование наплывов и хорошо управлять ориентацией металлических пигментов в пленке. Действительно, недавно было установлено, что для эффективного управления реологическими характеристиками при нанесении наиболее целесообразно получать органические «микрогели» и смешивать их с растворами термореактивных гидроксилсодержащих акриловых полимеров. Для этих целей в качестве мономеров могут использоваться глицидилметакрилат и метакриловая кислота, реагирующие в процессе синтеза в присутствии аминного катализатора, приводя, в конечном счете, к частичкам, которые абсолютно нерастворимы в органических растворителях. Эти частички можно модифицировать другим полимером после получения ядра микрогеля и окончательно разбавить смесью сильных растворителей.