Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика 11-20.docx
Скачиваний:
7
Добавлен:
26.09.2019
Размер:
110.02 Кб
Скачать

13. Полупроводниковый "p - n" переход. Электропроводимость перехода при прямом и обратном напряжении.

Полупроводниковый диод состоит из двух типов полупроводников — дырочного и электронного. В процессе контакта между этими областями из области с полупроводником n-типа в область с полупроводником p-типа проходят электроны, которые затем рекомбинируют с дырками. Вследствие этого возникает электрическое поле между двумя областями, что устанавливает предел деления полупроводников — так называемый p-n переход. В результате в области с полупроводником p-типа возникает некомпенсированный заряд из отрицательных ионов, а в области с полупроводником n-типа возникает некомпенсированный заряд из положительных ионов. Разница между потенциалами достигает 0,3-0,6 В.

. Связь между разницей потенциалов и концентрацией примесей выражается следующей формулой:

где — термодинамическое напряжение, — концентрация электронов, — концентрация дырок, — собственная концентрация[2].

В процессе подачи напряжения плюсом на p-полупроводник и минусом на n-полупроводник внешнее электрическое поле будет направлено против внутреннего электрического поля p-n перехода и при достаточном напряжении электроны преодолеют p-n переход, и в цепи диода появится электрический ток (прямая проводимость). При подаче напряжения минусом на область с полупроводником p-типа и плюсом на область с полупроводником n-типа между двумя областями возникает область, которая не имеет свободных носителей электрического тока (обратная проводимость). Обратный ток полупроводникового диода не равен нулю, так как в обоих областях всегда есть неосновные носители заряда. Для этих носителей p-n переход будет открыт.

Таким образом, p-n переход проявляет свойства односторонней проводимости, что обуславливается подачей напряжения с различной полярностью. Это свойство используют для выпрямления переменного тока.

14. Взаимодействия параллельных проводников с током. Формула силы взаимодействия.

Закон Ампера — закон взаимодействия электрических токов. Впервые был установлен Андре Мари Ампером в 1820 для постоянного тока. Из закона Ампера следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила , с которой магнитное поле действует на элемент объёма проводника с током плотности , находящегося в магнитном поле с индукцией

.

Сила , с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна силе тока в проводнике и векторному произведению элемента длины проводника на магнитную индукцию :

.

15. Магнитные поля токав различной формы и их изображение. Определение направления линий индукции при помощи правила винта и магнитной стрелки.

Магнитное поле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения, магнитная составляющая электромагнитного поля. Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени)

Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля.

Электрический ток(I), проходя по проводнику, создает магнитное поле (B) вокруг проводника.

1. Чтобы узнать направление магнитных линий для прямого проводника с током, расположите его так, чтобы электрический ток шел в направлении от вас (например, в лист бумаги). Попробуйте вспомнить, как двигается бур или закручиваемый отверткой винт: по часовой стрелке и вперед. Изобразите это движение рукой, чтобы понять направление линий. Таким образом, линии магнитного поля направлены по часовой стрелке. Отметьте их схематично на чертеже. Этот метод называется правилом буравчика.

2. Если проводник расположен не в том направлении, мысленно встаньте таким образом или поверните конструкцию так, чтобы ток от вас удалялся. Затем вспомните движение бура или винта и поставьте направление магнитных линий по часовой стрелке.

3. Если правило буравчика кажется вам сложным, попробуйте использовать правило правой руки. Чтобы с его помощью определить направление магнитных линий, расположите руку используйте правую руку с оттопыренным большим пальцем. Большой палец направьте по движению проводника, а 4 остальных пальца – в направлении индукционного тока. Теперь обратите внимание, силовые линии магнитного поля входят в вашу ладонь.

4. Для того, чтобы использовать правило правой руки для катушки с током, обхватите его мысленно ладонью правой руки так, чтобы пальцы были направлены вдоль тока в витках. Посмотрите, куда смотрит отставленный большой палец – это и есть направление магнитных линий внутри соленоида. Этот способ поможет определить ориентацию металлической болванки, если вам нужно зарядить магнит при помощи катушки с током.

5. Чтобы определить направление магнитных линий при помощи магнитной стрелки, расположите несколько таких стрелок вокруг провода или катушки. Вы увидите, что оси стрелок направлены по касательным к окружности. С помощью этого метода можно найти направление линий в каждой точке пространства и доказать их непрерывность.

16. Действие магнитного поля на проводник с током. Сила Ампера. Индукция магнитного поля. Взаимодействие токов было открыто в 1820 году и изучено Ампером, который исследовал поведение подвижных контуров различной формы с током. Магнитное взаимодействие проводников отлично от электрического взаимодействия.

Электрическое взаимодействие зависит от наличия зарядов и от их величины. Магнитное взаимодействие возникает только при наличии токов и зависит от их величины. Проводники с сонаправленными токами притягиваются, с противоположно направленными токами - отталкиваются. Если заряженное тело находится внутри замкнутой металлической оболочки, электрического действия на него других зарядов не наблюдается, тогда как магнитное действие сохраняется. Взаимодействие проводников с током обусловлено возникновением вокруг них магнитного поля. Магнитное поле возникает вокруг проводника с током всегда, даже если нет другого проводника и отследить действие поля таким способом нельзя.

B=mm0H, m - магнитная проницаемость вещества.

Сила, действующая на проводник с током в магнитном поле, пропорциональна силе тока в проводнике I, магнитной индукции B, длине проводника L и синусу угла между направлением тока в проводнике и направлением вектора магнитной индукции a (Закон Ампера):

F=BLIsina.

Направление силы Ампера определяется следующим правилом: если направить пальцы левой руки вдоль тока таким образом, чтобы вектор магнитного тока входил в ладонь, то отставленный в сторону большой палец укажет направление силы Ампера.

МАГНИТНАЯ ИНДУКЦИЯ- это силовая характеристика магнитного поля.

Вектор магнитной индукции направлен всегда так, как сориентирована свободно вращающаяся магнитная стрелка в магнитном поле.

Единица измерения магнитной индукции в системе СИ: