Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Inzhenerka.doc
Скачиваний:
5
Добавлен:
26.09.2019
Размер:
814.59 Кб
Скачать

21. Задача 2. Построить линию пересечения поверхности вращения и плоскости общего положения, заданной двумя пересекающимися прямыми α(h∩ f) (рис.116).

а) модель б) эпюр

Рисунок 116. Пересечение параболоида вращения плоскостью общего положения

Линия пересечения поверхности Ф плоскостью α(h∩ f) и проекции её на плоскость, перпендикулярную оси, являются кривыми, имеющими ось симметрии. Для доказательства этого утверждения проведем вспомогательную плоскость β, перпендикулярную оси. Вспомогательная плоскость пересечет заданную поверхность по параллели p, фронтальная проекция которой p2, совпадает со следом плоскости β2, а горизонтальная проекция p1 - является окружностью. Линией пересечения вспомогательной плоскости с заданной плоскостью α(h∩ f) является горизонталь h1.

Параллель p и горизонталь h1, находясь в одной плоскости β, пересекаются в точках 1 и 2, которые принадлежат искомой линии. Полученные точки симметричны друг другу относительно плоскости σ, перпендикулярной хорде 1-2 и проходящей через ее середину. Заметим, что плоскость σ, являясь множеством точек, равноудаленных от концов хорды 1 - 2, пройдет через ось поверхности вращения, все точки которой также равноудалены от точек 1 и 2.

Очевидно, что для любой другой пары точек, расположенных на концах хорд других окружностей (но параллельных хорде 1-2), плоскость σ будет также являться плоскостью симметрии. Следовательно, линия пересечения поверхности вращения с плоскостью α представляет собой симметричную кривую, осью симметрии которой служит линия пересечения плоскостей α и σ – прямая, пересекающая поверхность в точках 3 и 4 (линия ската плоскости α, проходящая через ось поверхности вращения).

Таким образом, используя вспомогательные горизонтальные секущие плоскости можно получить необходимое множество точек для построения линии пересечения плоскости α и поверхности Ф, которой является эллипс. Поэтому для более точного построения необходимо учитывать точки, определяющие положение осей эллипса (3, 4, 5 и 6)

Однако, если не учитывать характерные точки, определяющие границу зоны видимости линии пересечения и высшую и низшую точки этой линии, построение будет неточным.

Точки, определяющие зону видимости - 7 и 8, расположены на главном меридиане поверхности. Для построения их, через главный меридиан проведем вспомогательную секущую плоскость γ, параллельную фронтальной плоскости проекций. Плоскость γ пересекает плоскость α по фронтали f1, которая, в свою очередь, находясь в одной плоскости с главным меридианом, пересекается с ним в искомых точках 7 и 8.

Высшая и низшая точки сечения - 3 и 4 находятся на линии наибольшего ската плоскости α, проходящей через ось поверхности Ф, т.е. на прямой s. Эту прямую и меридиан поверхности, плоскость которого совпадает с прямой s, повернем вокруг оси до положения s1, в котором прямая s и плоскость меридиана окажутся параллельными П2. Отметим при этом, что точка К пересечения прямой s и осью остается неподвижной, а вращаемый меридиан в итоге совместится с главным меридианом - очерком фронтальной проекции поверхности вращения. Отметим точки пересечения фронтальной проекции главного меридиана и повернутой прямой. Возвращая обратным поворотом прямую s с найденными точками в исходное положение, находим положение точек 3 и 4.

Соединив, полученные точки кривой с учетом видимости получим линию пересечения плоскости α с поверхностью Ф.

22. Пересечение прямой линии с кривыми поверхностями. Определение результатов пересечения геометрических фигур на чертеже связано с решением позиционных задач третьего типа, так называемых главных позиционных задач.

В данном разделе рассматриваются задачи на пересечение прямой линии с кривой поверхностью (1.ГПЗ).

Решение задач 1.ГПЗ. 1 ( )

Алгоритм решения

1.              Искомые проекции точек пересечения проецирующих геометрических фигур уже изображены на чертеже по принадлежности их главным проекциям.

2.              Определяют видимость элементов геометрических фигур.

Пример (рис. 6.24). Построить трёх картинный чертёж пересекающихся прямой линии а и цилиндра вращения  .

Рис. 6.24

Алгоритм решения:

1.              1.   P  = a ;

2.              a  P  = a ;

3.              P  = a .

Решение задач 1.ГПЗ . 2 (  , не  )

При пересечении кривой поверхности с прямой линией для нахождения точек их пересечения используется тот же алгоритм решения, что и при пересечении прямой с плоской поверхностью:

1.              Одна из искомых проекций точки пересечения геометрических фигур уже изображена на чертеже по её принадлежности главной проекции проецирующей фигуры.

2.              Вторую проекцию строят по признаку её принадлежности геометрической фигуре общего положения.

3.              Определяют видимость элементов заданных фигур.

Пример (рис. 6.25). Определить проекции точек пересечения прямой линии а с цилиндром вращения  .

Рис. 6.25

Алгоритм решения:

1.              1.  P  =  a .

2.              P  a .

Решение задач 1.ГПЗ . 3 (не  , не  )

Эти главные позиционные задачи решают с использованием метода введения дополнительной плоскости – посредника, как и при решении задач на пересечение прямой линии с плоской поверхностью.

Алгоритм решения

1.              Заданную прямую заключают во вспомогательную проецирующую плоскость – посредник.

2.              Строят линию пересечения заданной поверхности с плоскостью-посредником.

3.              Определяют точки пересечения заданной прямой с полученной линией, которые и являются искомым решением задачи.

Определяют видимость элементов заданных геометрических фигур.

Пример (рис. 6.26). Определить проекции точек пересечения прямой линии а с конусом вращения  .

Рис. 6.26

Алгоритм решения:

1.      a  = l ;

2.      l a = P ; l a = P ;

3.      P l .

23. Пересечение двух поверхностей. Способ вспомогательных секущих плоскостей.  При построении линии пересечения двух поверхностей способом вспомогательных секущих плоскостей секущие плоскости, принятые в качестве посредников, могут быть и общего, и частного положения. Более широкое применение находят плоскости частного положения.

Рис. 132

Плоскости общего положения применяются в ограниченных случаях. Например, их удобно использовать при построении линии пересечения конических и цилиндрических, а также пирамидальных и призматических поверхностей общего вида, когда основания этих поверхностей расположены в одной и той же плоскости.

24. Пересечение двух поверхностей. Способ вспомогательных сферических поверхностей. При определении линии пересечения двух поверхностей вращения, при их особом взаимном расположении, не всегда рационально применять вспомогательные секущие плоскости. В некоторых случаях применяют метод вспомогательных секущих сфер – концентрических или эксцентрических.

Концентрические сферические посредники применяются при определении линии пересечения двух поверхностей вращения с пересекающимися осями. 

Каждая из этих поверхностей имеет семейство окружностей, являющихся линиями сечения их концентрическими сферами. Применению метода концентрических сфер должно предшествовать такое преобразование чертежа, в результате которого оси обеих поверхностей должны быть расположены параллельно одной и той же плоскости проекций (рис.151) или одна из осей становиться проецирующей прямой, а вторая - линией уровня (рис.152).

Оси поверхностей G и Q параллельны фронтальной плоскости проекций и пересекаются в точки А (рис.151). Эта точка принимается за центр всех вспомогательных концентрических сфер. Каждая из концентрических сфер пересекает поверхности по окружностям - параллелям (а, b, c, d, n), фронтальные проекции которых являются прямыми линиями (а2b2c2d2n2). Проекции точек 1222324252 и 62 пересечения проекций параллелей принадлежат проекции искомой линии пересечения поверхностей. Пересечение главных фронтальных меридианов поверхностей определяют положение верхней и нижней точек (7 и 8) линии.

Для точного построения линии пересечения поверхностей необходимо найти точки 9 и 10, которые определяют границу зоны видимости линии пересечения поверхностей на горизонтальной проекции. Для этой цели использовалась вспомогательная секущая плоскость b, которая пересекает поверхность Q по линии m, а поверхность G по образующим, горизонтальные проекции которых пересекаясь определяют положение искомых точек. 

Соединив найденные точки 1...10 с учетом видимости получим линию пересечения поверхностей.

Рисунок 152. Пересечение поверхностей вращения,  ось одной - горизонтально проецирующая  прямая, а второй - горизонталь

Вторым примером использования в качестве вспомогательных поверхностей посредников концентрических сфер рассмотрим при определении линии пересечения поверхностей предложенных на рисунке 152. Оси поверхностей вращения G и Q пересекаются в точки А , при этом ось поверхности Q - горизонтально проецирующая прямая, а ось поверхности G - горизонталь. Точка А принимается за центр всех вспомогательных концентрических сфер.

Точки 1 и 2 линии пересечения построены с помощью сферы радиуса R. Эта сфера пересекает поверхность Q  по окружности а, а поверхность G по окружности b, которая показана только на горизонтальной проекции. Пересечение горизонтальных проекций окружностей а1 и b1 определяют проекции 11 и 21 точек линии пересечения. Их фронтальные проекции 12 и 22 построены на а2 пересечении с линиями связи.

Аналогично найдены точки 3 и 4.

Для нахождения точек 5 и 6 определяющих границу зоны видимости на горизонтальной проекции, использовалась вспомогательная секущая плоскость b, которая пересекает поверхность Q по окружность n, а коническую поверхность G по треугольнику, определяющему ее очерк на горизонтальной проекции.

Точки 7 и 8 находятся на границе зоны видимости фронтальной проекции, для их нахождения используется вспомогательная секущая плоскость g

Соединив найденные точки 1...8 с учетом видимости получим линию пересечения поверхностей G и Q.

Эксцентрические сферические посредники применяются при определении точек линии пересечения поверхностей вращения с поверхностью несущей на себе непрерывное множество окружностей. Обе поверхности должны иметь общую плоскость симметрии. Вспомогательные эксцентрические сферы пересекаются с данными поверхностями по окружностям.

а) модель

б) эпюр

Рисунок 153. Пересечение конуса и сферы

Определения линии пересечения конуса  и сферы  применение эксцентричных сфер, как поверхностей - посредников. Центры сфер - точки  расположены на оси конуса. Сфера  пересекает конус и сферу по окружностям , которые пересекаются в  двух точках, принадлежащих искомой линии пересечения (рис.153а). 

Верхняя и нижняя точки линии пересечения найдены с помощью вспомогательной секущей плоскости -плоскости  главного фронтального меридиана, пересекающая конус и сферу по треугольнику и окружности, являющимися очерками поверхностей на фронтальной плоскости проекций. 

Точки, определяющие границу зоны видимости линии пересечения на горизонтальной плоскости проекций, найдены с помощью вспомогательной секущей плоскости  - горизонтальной плоскости уровня, пересекающей сферу по экватору - окружности являющейся очерком шара на горизонтальной проекции, а конус по окружности - параллели.

Точки, найденные с помощью вспомогательных поверхностей посредников, определяют линию пересечения конуса и шара.

Рассмотрим, на примере определения линии пересечения конуса Q и сферы G (рис.153б), применение эксцентричных сфер, как поверхностей - посредников. Центры сфер - точки А1А2 и А3 расположены на оси конуса. Сфера радиуса R1 с центром в точке А1 пересекает конус и сферу по окружностям а и в, которые пересекаются в точках 1 и 2, принадлежащих искомой линии пересечения. С помощью сферы R2 с центром А2 и сферы R3 с центромА3 определено положение точек 34 и 5,6 соответственно. Точки 7 и 8 найдены с помощью вспомогательной секущей плоскости a (плоскости фронтального меридиана), пересекающей конус и сферу по главным фронтальным меридианам k и l. Точки 9 и 10, определяющие границу зоны видимости линии пересечения на горизонтальной плоскости проекций, найдены с помощью вспомогательной секущей плоскости  b (горизонтальной плоскости уровня), пересекающей сферу G по экватору s, а конус Q по окружности p. Точки 1...10, построенные с помощью вспомогательных поверхностей посредников, определяют линию пересечения конуса и шара.Решение задачи построения линии пересечения двух поверхностей способом вспомогательных секущих плоскостей рассмотрим на примере пересечения конуса вращения со сферой. В качестве поверхностей-посредников примем плоскости частного положения— горизонтального уровня. На рис. 132 сначала отметим очевидные общие точки А и В поверхностей в пересечении их главных меридианов f и 1-S-2, так как поверхности имеют общую фронтальную плоскость симметрии Ф(Ф1); f2^S2—S2 = А2(В2); A2Al(B2Bl)|| S2S1, A2Al(B2Bl) ^f1 =A1(B1) Эти опорные точки являются наивысшей А и наинизшей В точками линии пересечения, а также точками видимости линии на плоскости П2. Брать вспомогательные фронтальные плоскости, параллельные П2, для построения следующих точек неудобно, так как они будут пересекать конус по гиперболам. Графические простые линии (окружности параллелей) на данных поверхностях получаются от пересечения их горизонтальными плоскостями уровня Г. Первую такую вспомогательную плоскость Г1 берем на уровне экватора сферы И. Эта плоскость пересекает конус по параллели h1.В пересечении этих параллелей находятся точки видимости линии пересечения относительно плоскости П1: h1^h11 = С1(D1); С1С2|| S1S2; С1С2 ^ h2(hl2) = C2(D2). Если пересекающиеся поверхности вращения не имеют общей фронтальной плоскости симметрии (рис. 133), то самую высокую А и низкую В точки линии пересечения поверхности легко определить, построив изображения этих поверхностей на плоскости П4, параллельной осевой плоскости Sum (Sum1) данных поверхностей. Можно построить проекции всей линии пересечения в системе плоскостей П1_|_П4, а затем построить ее фронтальную проекцию в проекционной связи с горизонтальной проекцией, замеряя высоты точек на плоскости П4,так, как это показано на рис. 132 для точек А и В.

25.  Чертежный шрифт и выполнение надписи на чертеже. Все надписи на чертежах должны быть выполнены чертёжным шрифтом. Начертание букв и цифр чертёж­ного шрифта устанавливается стандартом. Стандарт оп­ределяет высоту и ширину букв и цифр, толщину линий обводки, расстояние между буквами, словами и строчка­ми. Шрифт может быть как с наклоном (около 75°), так и без наклона. Стандарт устанавливает следующие разме­ры шрифта: 1,8 (не рекомендуется, но допускается) 2,5; 3,5; 5; 7; 10; 14; 20; 28; 40. За размер (h) шрифта прини­мается величина, определяемая высотой прописных (заглавных) букв в миллиметрах. Высота буквы измеря­ется перпендикулярно к основанию строки. Нижние эле­менты букв Д, Ц, Щ и верхний элемент буквы Й выпол­няют за счёт промежутков между строками.

Толщину (d) линии шрифта определяют в зависи­мости от высоты шрифта. Она равна 0,1 h. Ширину (д) буквы выбирают равной 0,6 h . Ширина букв А, Д Ж, М, Ф, X, Ц, Щ, Ъ, Ы, Ю больше этой величины на 1 или 2d (включая нижние и верхние элементы), а шири­на букв Г, 3,С меньше на d.

Высота строчных букв примерно соответствует вы­соте следующего меньшего размера шрифта. Так, высота строчных букв размера 10 равна. 7, размера 7 равна 5 и т.д. Верхние и нижние элементы строчных букв выпол­няются за счёт расстояний между строками и выходят за строку на 3d.Ширина большинства строчных букв равна 5d, ширина букв а, м, ц, ъ равна6d; букв ж, т, ф, щ, ы, ю - 7d; а букв з, с - 4d. Расстояние между нижними линей­ками строк берут равным 1,7 h или 17d. Расстояние между буквами и цифрами в словах принимают равным 0,2 h или 2d, между словами и числами-0,6 h или 6 d. Все надписи на чертежах наносятся от руки с наклоном букв  и цифр к основанию строки 75°.

Чтобы научиться красиво писать чертёжным шриф­том, вначале для каждой буквы чертят сетку с ячейками, имеющими форму параллелограмма с основанием и высотой, равной h/7 и углом при основании около 75о. По­сле овладевания навыками написания букв и цифр можно проводить только верхнюю линию строки. Ко:нтуры букв намечают тонкими линиями, убедившись, что буквы написаны правильно, обводят их мягким карандашом.

Для букв Г,Д, И,. И, Л, М, П, Т, X, Ц, Ш, Щ, можно провести только две вспомогательные линии на расстоя­ний, фавном их высоте h. Для букв Б, В, Е, Н, Р, У, Ч, Ъ, Ы,Ь, Я между двумя горизонтальными линиями следует добавить посредине ещё одну по которой выполняют средние их элементы. А для буки 3, О, Ф, Ю проводят четыре линии, где средние линии указывают границы округлений.

Наименования, заголовки, обозначения в основной надписи, на поле чертежа допускается писать без накло­на. Для быстрого выполнения надписей чертёжным шрифтом иногда пользуются различными трафаретами.

26. Формы чертежей по ГОСТ – основные и дополнительные. Формат чертежа - это лист бумаги определенного размера. Существует государственный стандарт ГОСТ 2.301-68 в котором прописаны размеры форматов необходимых для использования при выполнении чертежей и других документов, используемых в конструкторской документации.

Форматы делятся на основные и дополнительные. К основным форматам относят формат с размерами сторон 1189 х 841 мм (площадь 1 м2) и другие форматы полученные путем последовательного деления предыдущего основного формата на две равные части - линией, параллельной меньше стороне предыдущего формата. Размеры сторон формата площадью 1м2 выбраны таким образом, чтобы при делении пополам большей стороны формата получится прямоугольник, подобный исходному.Дополнительные форматы образуются увеличением коротких сторон основных форматов на величину, кратную их размерам. Обозначение основных форматов состоит из букв А и арабской цифры от 0 до 5. Обозначение дополнительных форматов состоит из обозначения основного формата и его кратности. Предельные отклонения сторон форматов - в пределах от 1,5 до 3 мм в зависимости от размера стороны. Размеры основных и дополнительных форматов приведены ниже в таблице.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]