Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материаловедение, ответы.docx
Скачиваний:
12
Добавлен:
26.09.2019
Размер:
256.08 Кб
Скачать

Классификация конструкционных материалов и их характеристика.

Металлические материалы.

К ним относятся все металлы и их сплавы. Среди них можно выделить несколько групп, отличающихся друг от друга по свойствам.

- Черные металлы. Это железо и сплавы на его основе – стали чугуны (содержащие Fe>50%) в их составе вредные (сера и фосфор) и полезные (марганец и ) смеси

- Цветные металлы. В эту группу входят металлы и их сплавы, такие как медь, алюминий, магний, цинк и др.

- Благородные металлы. К ним относятся золото, серебро, платина, палладий, осмий.

-Редкоземельные металлы, н-р празеодим.

Неметаллические материалы.

- Пластмассы. Это материалы на основе высокомолекулярных соединений – полимеров с наполнителями.

- керамические материалы. Основой этих материалов порошки тугоплавких соединений типа карбидов, боридов, нитридов и оксидов

- металлокерамические материалы (металлокерамика). В этих материалах основой является керамика, в которую добавляется некоторое количество металла, кот. Является связкой и обеспечивает такие свойства как пластичность и вязкость.

- стекло. Оно представляет собой систему, состоящую из оксидов различных элементов, в первую очередь оксид кремния SiO2.

- резина. Это материалы на основе каучука – углеводородного полимера с добавлением серы и других элементов

- дерево.

Композиционные материалы.

Представляют собой композиции полученные искусственным путем, из двух и более разнородных материалов, сильно отличающихся друг от друга. В результате, композиции существенно отличаются по свойствам от компонентов их составляющих, т.е. полученный материал имеет новый комплекс свойств. В состав могут входить как металлы так и неметаллы. Удельная доля применения в технике этих материалов различна. Наиболее широко примняютс металлические материалы (95%).

Характеристика кристаллического строения ме. Все твердые тела делятся на : кристаллически , аморфные

Металлы имеют кристаллическое строение. Оно характеризуется закономерным расположением атомов в пространстве и образованием кристаллической решетки. Наименьшая часть объема крист.реш., которая определяет ее систему, называется элементарной кристаллической ячейкой.

Типы ячеек:

-гранецентрированная (ГЦК) – Fe, Cr, W, V, Mo и др

-объемноцентрированная кубическая (ОЦК) Fe, Cu, AL, Ni, Au и др

-гексагональная плотноупакованная решетка (ГПУ) Zn, Mg, Cd и др

- тетрагональная решетка – полуается при растягивании куба вдоль одной оси. Такая решетка может быть и ОЦК И ГЦК (Fe,радий)

У некоторых металлов крист.реш. может измняться при изменении температуры. Это явление называется полиморфизмом или аллотропией. Это может вызвать изменение свойств. Характерно для Fe, Ti, Sn, C…

Металлы и сплавы имеют поликристаллическое строение.

Что такое зерна ме и сплавов. Металлы и сплавы имеют поликристаллическое строение. Эти кристаллы называются зернами. Он обычно имеют неправильную форму. Каждое из этих зрен имеет свою ориентировку кристаллической решеткой, отличающуюся от соседних.

От чего зависит количество вакансий в металлах и чему способствует? Вакансии – это отсутствие атома в узле крист.реш. сообщает атомам подвижность. Атомы перемещеются в процессе диффузии и самодиффузии. Число вакансий увеличивается с повышением температуры.

Скопление вакансий может привести к образованию пустот и пор.

От чего зависит плотность дислокаций и к чему они приводят? Дислокация – это особая конфигурация расположения атомов в крист.реш.

После отжига плотность дислокаций составляет 103-108 см2

После холодной деформации плотность дислокаций увеличивается до 1011-1012

Повышение плотности увеличивает прочность.

Потность дилокаций в кристалле оказывает решающее влияние на прочностные характеристики кристалла.

Реальные не деформированные кристаллы имеют плотность дислокаций 106-107 см-2 а деформированные 1010-1012 см-2.

Основные характеристики механических св. ме. -прочность

-пластичность

-упругость

-вязкость

-твердость

Прочность – способность металла сопротивляться деформации и разрушению.(см основные харак-ки прочности)

Пластичность – способность металла изменять форму и размеры без нарушения сплошности. (см основные харак-ки пластичности)

Твердость металлов – это сопротивление вдавливанию в его поверхность специального инструмента в виде шарика, конуса, а также сопротивление царапанию.

Методы:

-по Бринеллю

-по Роквеллу

-по Виккерсу

- метод измерения микротвердости

Дать характеристику твердости ме. Твердость металлов – это сопротивление вдавливанию в его поверхность специального инструмента в виде шарика, конуса, а также сопротивление царапанию.

Методы: по Бринеллю, по Роквеллу, по Виккерсу, метод измерения микротвердости

Твердость по Бриннелю (НВ) – определяют вдавливанием в поверхность металла стальной закаленный шарик.

Размер шарика выбирается в зависимости от толщины испытуемого образца: обычно пользуются шариками стандартных размеров диаметрами в 10мм, 5мм или 2,5мм.

Твердость по Роквеллу – определяют вдавливанием в поверхность алмазного конуса с углом при вершине 1200 или стального закаленного шарика, диаметром 1,5875мм.

Шкала С служит для испытания твердых материалов, имеющих твердость по Бриннелю от 230 до 700 кгс/мм2. Алмазный конус вдавливается под нагрузкой 150кгс. Интервал измерения твердости по шкале С – от 22 до 68 едениц, твердость обозначается НRC.

Шкала А используется при испытании очень твердых материалов или тонких поверхностных слоев (0,5…1,0). Применяют тот же алмазный конус но вдавливают под нагрузкой в 60 кгс. Значение твердости определяют по шкале С но обозначают HRA. Интервал измерения твердости по этой шкале от 70 до 85 единиц.

Шкала В предназначена для испытания мягких материалов, имеющих твердость по Бринеллю от 60 до 230 кгс/мм2. Стальной шарик диаметром 1,5875 вдавливается под нагрузкой в 100 кгс. Твердость измеряется в пределах от 25 до 100 едениц шкалы В и обозначается HRB.

Преимущества: быстрота измерений, возможность измерять твердость закаленных сталей и др. мягкихматериалов и очень тонких изделий.

Метод измерения микротвердости предназначен для определения твердости структурных составляющих и фаз в металлах и очень тонких поверхностных слоев и покрытий. В испытываемую поверхность вдавливают алмазную пирамиду под нагрузкой 0,05…5,00 Н.

Метод измерения микротвердости аналогичен методу Виккерса.

Твердость по Виккерсу. Метод заключается во вдавливании алмазного наконечника, имеющего форму правильной четырехгранной пирамиды(угол 136), в образец (изделие) под действием нагрузки Р и измерении диагонали отпечатка d, оставшегося после снятия нагрузки .

Нагрузка Р может меняться от 9,8 (1 кгс) до 980 Н (100 кгс).

Метод используют для определения твердости деталей малой толщины и тонких поверхностных слоев, имеющих высокую твердость.

Чем тоньше материал, тем меньше должна быть нагрузка. Число твердости по Виккерсу HV определяют по специальным таблицам по измеренной величине d (диагонали отпечатка в миллиметрах).

Что такое полиморфизм? Полиморфи́зм криста́ллов (от др.-греч. πολύμορφος «многообразный») — способность вещества существовать в различных кристаллических структурах, называемых полиморфными модификациями (их принято обозначать греческими буквами α, β, γ и т. д.)

Характерен для различных классов веществ. Полиморфизм для простых веществ называют аллотропией.

Полиморфизм объясняется тем, что одни и те же атомы вещества могут образовывать различные устойчивые кристаллические решётки, соответствующие минимумам на поверхности энергии Гиббса. Стабильной модификации отвечает глобальный минимум, метастабильным — локальные минимумы. При повышении температуры более прочная кристаллическая решётка низкотемпературной модификации может характеризоваться меньшей энтропией за счёт того, что она менее восприимчива к возбуждению тепловых колебаний, поэтому другая модификация, характеризующаяся более крутой зависимостью энергии Гиббса от температуры, становится более выгодной.

При заданных условиях (температура, давление и др.) одна из модификаций является термодинамически стабильной, другие — метастабильными. При изменении условий может оказаться стабильной другая модификация. Условия, при которых стабильна каждая из модификаций, изображаются на фазовой диаграмме соответствующего вещества. Переход из метастабильной модификации в стабильную, выгодный термодинамически, не всегда можно наблюдать на практике, так как он зачастую связан с кинетическими затруднениями. Примером является алмаз, полиморфная модификация углерода, которая при нормальных условиях метастабильна, но существует неограниченно долго. Это объясняется тем, что для перестройки кристаллической решётки требуется преодолеть энергетический барьер. Во многих случаях удаётся закалить высокотемпературную модификацию до комнатной температуры. Не удаётся закалить высокотемпературную фазу в случае мартенситных превращений, характеризующихся бездиффузионным переходом.

Дайте определение теоретической температуре кристаллизации. Температура Тs, при которой свободная энергия металла в твердом и жидком состоянии одинакова, называется теоретической температурой кристаллизации. При этой температуре жидкость и кристаллы находятся в равновесии, поэтому металл одновременно находится и в жидком и в твердом агрегатном состоянии.

Какие чугуны называют белыми? Белый чугун – чугун, в котором углерод находится в виде химического соединения с железом Fe3C – цементита. Получают белый чугун при ускоренном охлаждении в процессе отливки деталей, заготовок. Способствует также получению этой разновидности чугуна повышенной содержание в нем хрома, марганца. Структура белого чугуна определяет его механические свойства: это твердый хрупкий материал. Вследствие низкой пластичности, белый чугун применяется очень редко, в основном для изделий, работающих в условиях абразивного и гидроабразивного износа, когда его повышенная хрупкость не играет решающей роли.

Какие чугуны называют серыми? как они маркируются? Чугун – это железоуглеродистый сплав с содержнием углерода от 2,14 до 6%.

Чугуны, в которых углерод находится в свободном виде, классифицируют по форме графитовых включений – серый, ковкий, высокопрочный.

В сером чугуне содержится графит в виде пластинчатых включений. Его получают при медленном охлаждении металла при литье изделий, а также при повышенном содержании кремния, углерода. Обозначается он буквами СЧ, после которых ставится цифра, показывающая предел прочности при растяжении. Например, СЧ12 (предел прочности 12кг/мм2). Применяется серый чугун для изготовления слабонагруженных деталей, работающих в легких условиях. Например, корпуса редукторов, насосов, электродвигателей, различные крышки и т.д.

Какие чугуны называются ковкими? Как они маркируются? Ковкий чугун с хлопьевидными включениями графита. Его получают из белого чугуна путем специального отжига. Это длительная термическая обработка, при которой белый чугун медленно нагревается до температур 950-1000 градусов и после определенной выдержки медленно охлаждается. При таком отжиге происходит графитизация цементита белого чугуна с образованием хлопьевидных включений графита. Обозначается ковкий чугун буквами КЧ, после которых идут цифры, показывающие предел прочности при растяжении в кг/мм2 – первая цифра, и относительное удлинение в %. Например КЧ30-6 (пред.проч.=30, отн.удл.=6). Применяется этот чугун для изготовления деталей, работающих в более тяжелых условиях – при повышенных нагрузках, при знакопеременных и небольших ударных нагрузках. Например картеры редукторов, разлиные крюки, фланцы и т.д.

Какие чугуны называются высокопрочными? Как они маркируются? Высокопрочный чугун получают путем модифицирования его при выплавке магнием или церием в количестве 0,05 %. Модификаторы способствуют формированию шаровидных включений графита. Обозначаются высокопрочные чугуны буквами ВЧ и цифрой, показывающей предел прочности при растяжении в (ГОСТ 7293-85). Например, ВЧ 40 (в = 40 кг/мм2). Применяется высокопрочный чугун для изготовления ответственных деталей, работающих в довольно сложных условиях при повышенном нагружении. Например, коленчатые и распределительные валы легковых автомобилей, прокатные валки, корпуса турбин, детали кузнечно-прессового оборудования и др.

Что такое фазовая перекристаллизация? ФАЗОВАЯ ПЕРЕКРИСТАЛЛИЗАЦИЯ, отжиг второго рода - термическая обработка сплавов, заключающаяся в нагреве выше температур фазового превращения и охлаждения с малой скоростью. Фазовая перекристаллизация приводит сплав к фазовому составу, соответствующему равновесному состоянию.ОТЖИГ II РОДА – (фазовая перекристаллизация) [annealing for phase recrystallization] — отжиг, при котором приближение металлов и сплавов к равновесному состоянию, обусловленному диффузионными фазовыми превращениями. В большинстве случаев отжиг II рода — подготовительная термическая обработка отливок, поковок, проката. Понижая прочность и твердость, отжиг облегчает обработку резанием средне- и высокоуглеродистой стали. Измельчая зерно, снимая внутренние напряжения и уменьшая структурную неоднородность, отжиг способствует повышению пластичности и вязкости по сравнению со свойствами, получаемыми после литья, ковки и прокатки. В некоторых случаях (например, для крупных отливок) отжиг является окончательной термической обработкой. Различают следующие виды отжига II рода: полный, неполный и изотермический.

Что такое термическая обработка стали? Термическая обработка является основным способом изменния структуры и свойств стали. Цель любого процесса термической обработки заключается в том, чтобы нагревом до определенной температуры, выдержкой и последующим охлаждением с определенной скоростью вызвать желаемое изменение структуры металла или сплава и, соответственно, изменение свойств. Следовательно, основными факторами воздействия при термической обработке являются температура, время выдержки и скорость последующего охлаждения. В практике машиностроения различают первичную и вторичную термическую обработки. Назначение первичной термической обработки заключается в подготовке структуры к последующим операциям механической и окончательной термической обработки. К этому виду обработки относятся различные виды отжига и нормализации. Назначение вторичной (окончательной) обработки – получение необходимых эксплуатационных свойств деталей и изделий. К окончательной термической обработке относятся закалка и отпуск.

Что такое отжиг и нормализация? О́ТЖИГ, вид термической обработки материалов, заключающийся в нагреве до определенной температуры, выдержке и последующем, обычно медленном, охлаждении.

Отжигом называют термообработку, направленную на получение равновесной структуры.

Различают 2 два вида отжига:

- отжиг 1-го рода – в процессе отжига не происходит фазовой перекристаллизации;

- отжиг 2-го рода - осуществляется с фазовой перекристаллизацией

Нормализация- разновидность отжига, при которой изделие нагревается до аустенитного состояния.

Что такое мартенсит? пересыщенный тв р-р С в тетроганальной решетке альфа железа.

Что такое химико- термическая обработка(ХТО)? Процесс изменения химического состава структуры и свойств поверхностного слоя стали под действием нагрева и окр.среды определенного состава, вызывающих диффузионное насыщение этого слоя атомами насыщенного элемента.

Расскажите об алюминии и его сплавах. Алюминий- легкий ме серебристого цвета с температурой плавления 660.гранецентрированная кубическая решетка. Тв 20-25 НВ. имеет огромное значение в промышленности из-за высокой пластичности, большой тепло и электропроводности, слабой коррозии, т.к. образующая на поверхности пленка Al2O3 защищает металл от окисления. Из него изготавливают разного типа провода, применяют в электроаппаратуре. Как конструкционный материал алюминий чаще всего применяется в сплавах со следующими легирующими элементами: Cu, Zn, Mg, Ni, Fe, Mn, Ti, Si, Cr, которые формируют упрочняющие зоны и фазы.

Сплав алюминия с медью называется дуралюминием (дюраль); сплав с кремнием – силумин – только литейный сплав. Сплав с марганцем – АМц одновременно повышает коррозионную стойкость; Ni, Ti, Cr, Fe повышает жаропрочность сплавов, затормаживая процесс диффузии; литий и бериллий способствуют возрастанию модуля упругости.

Все алюминиевые сплавы можно разделить на деформируемые (получают лист, трубы, профиль, паковки, штамповки) и литейные – для фасонного литья.

Что такое материаловедение? наука о внутреннем строении и свойствах технических материалов, возможности их изменения в нужном направлении для целенаправленного использования в технике.

Какие материалы называют конструкционными? Материалы, из которых изготовляются детали машин, конструкций, сооружений, работающих под нагрузкой. Это определяется прежде всего их высокой прочностью, однородностью и непроницаемостью для жидкостей и газов. Кроме того, меняя рецептуру сплавов, можно менять их свойства в очень широких пределах.

Расскажите о металлических конструкционных сплавах. Все металла и их сплавы. черные ме( это железо и сплавы на его основе- стали и чугуны(содержание железа >=50%))в сплавы содержат углерод, полезные и вредные(фосфор и сера) примесей. цветные ме – ме из сплава меди, алюминия, цинка, Ti, Mg и др.благородные ме: золото. Серебро, платина, ме платиновой группы(палладий, осмий).редкоземельные ме: лантан, неодим, празеодим.