Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fiziologia.doc
Скачиваний:
22
Добавлен:
24.09.2019
Размер:
202.75 Кб
Скачать

5.Кодирование информации в нервной системе

Кодирование — это перевод характеристик внешнего раздражения во внутренние нервные коды, доступные для обработки и анализа нервной системой, т.е. в нервные импульсы и другиме материальные носители информации в нервной системе.

Цель кодирования:

Перевести внешние характеристики раздражения во внутренние коды нервной системы, с которыми она может работать.

Для этого надо отразить в характеристиках потока возбуждения важные для организма характеристики раздражения.

Проблема кодирования:

Нервный импульс имеет стандартную, всегда одинаковую, амплитуду потенциала действия: он не может быть ни больше, ни меньше по силе. Невозможно передать по нервному волокну, например, половинку импульса или четверть импульса. Как же он тогда передаст информацию о разной силе раздражителя? Проблема решается с помощью частотного или пространственного кода.

Виды кодирования

Основных видов кодирования два: частотное и пространственное. Иногда их объединяют и получается частотно-пространственное кодирование.

Частотное кодирование информации

Частотное кодирование: чем сильнее раздражитель, тем чаще будут идти порождаемые им импульсы.

Пример потоков нервных импульсов:

Слабый раздражитель: | _ | |_ | _ | _ |

Сильный раздражитель: | | | | || | ||| | |

Пространственное кодирование информации

Пространственное кодирование заключается в том, что на определенные характеристики раздражения реагирую не все, а только определенные рецепторы. Возбуждение доставляется адресно в строго определенную нервную структуру для анализа.

Процесс кодирования

Определенные параметры раздражителя, которые умеет снимать рецептор, он превращает в пропорциональное локальное электрохимическое возбуждение (рецепторный потенциал), а затем - в поток нервных импульсов определенной частоты и пространственной организации.

Таким образом, параметры раздражителя должны передаваться параметрами электрохимической импульсации, идущей от рецепторов.

Соответствие по частоте: частота импульсов, порождаемых рецепторами, пропорциональна силе раздражителя.

Соответствие номеру канала: определенному рецептору соответствует определенный адрес в сенсорной проекционной зоне коры больших полушарий головного мозга.

Топическое соответствие: взаиморасположение частей раздражителя соответствует взаиморасположению нейронов, из которых строится его нервная модель.

Соответствие по количеству: чем сильнее раздражитель, тем больше число возбуждающихся рецепторов.

Соответствие по длительности: чем сильнее раздражитель, тем дольше продолжается импульсация рецептора.

Соответствие по латентному периоду импульсации: сильный раздражитель уменьшает латентный период.

Детекция: нейрон-детектор возбуждается при раздражении своего рецептивного поля определенной конфигурации и не реагирует на отличающиеся рецептивного поля, т.е. на поля другой конфигурации.

Соответствие по паттерну (узору импульсов): характеристики раздражителя отражаются в узоре импульсации.

6.Периферический отдел зрительной системы.

Периферический отдел анализатора представлен рецепторами. Его назначение - восприятие и первичный анализ изменений внешней и внутренней сред организма. В рецепторах происходит трансформация энергии раздражителя в нервный импульс, а также усиление сигнала за счет внутренней энергии метаболических процессов. Для рецепторов характерна специфичность (модальность), т.е. способность воспринимать определенный вид раздражителя, к которому они приспособились в процессе эволюции (адекватные раздражители), на чем основан первичный анализ. Так, рецепторы зрительного анализатора приспособлены к восприятию света, а слуховые рецепторы – звука и т.д. Та часть рцепторной поверхности, от которой сигнал получает одно афферентное волокно, называется его рецептивным полем. Рецептивные поля могут иметь различное количество рецепторных образований (от 2 до 30 и более), среди которых есть рецептор-лидер, и перекрывать друг друга. Последнее обеспечивает большую надежность выполнения функции и играет существенную роль в механизмах компенсации.

Периферический отдел системы зрения – фоторецептор, локализующийся в глазу (орган зрения, включает также часть проводникового отдела и вспомогательные структуры). Вспомогательные структуры. Оптическая система – слёзная жидкость, роговица, водянистая влага, хрусталик, стекловидное тело. Обеспечивает фокусирование лучей на сетчатке и формирование в области ее центральной ямки. Глазодвигательный аппарат - наружные мышцы глазного яблока, подниматель верхнего века и орбитальная мышца. Внутренние мышцы обеспечивают фиксацию, поворот глаз и установку зрительных осей. Защитные органы включают веки, ресницы, конъюнктива, слезный аппарат, фасции глазницы (обеспечивают защиту глаз, питание роговицы).

Снаружи глаз виден как сферическое образование, прикрытое верхним и нижним веком и состоящее из склеры, коньюктивы, роговицы, радужной оболочки. Склера представляет собой соединительную ткань белого цвета, окружающую глазное яблоко. Коньюктива -- прозрачная ткань, снабженная кровеносными сосудами, которая на переднем полюсе глаза соединяется с роговицей. Роговица является прозрачным защитным наружным образованием, кривизна поверхности которого определяет особенности преломления света. Так, при неправильной кривизне роговицы возникает искажение зрительных изображений, называемое астигматизмом. Позади роговицы находится радужная оболочка, цвет которой зависит от пигментации составляющих ее клеток и их распределения. Между роговицей и радужной оболочкой находится передняя камера глаза, наполненная жидкостью -- "водянистой влагой". В центре радужной оболочки находится зрачок круглой формы, пропускающий внутрь глаза свет после его прохождения через роговицу.

Размер зрачка зависит от освещенности. Контроль за изменениями размера зрачка осуществляется автоматически нервными волокнами, заканчивающимися в мускулатуре радужной оболочки. Круговая мышца, суживающая зрачок -- сфинктер -- иннервируется парасимпатическим волокнами, мышца, расширяющая зрачок -- дилататор -- иннервируется симпатическими волокнами. Изменения диаметра зрачка меняют интенсивность светового раздражения незначительно -- всего в 16-17 раз (если учитывать, что диапазон интенсивности света изменяется в 16 млрд. раз). Реакция расширения зрачка до максимального диаметра -- 7,5 мм -- очень медленная: она длится около 5 минут. Максимальное сокращение диаметра зрачка до 1,8 мм достигается быстрее -- всего за 5 секунд. Это значит, что основная функция зрачка состоит не в регуляции интенсивности света вообще, а в том, чтобы пропускать лишь тот свет, который попадает на центральную часть хрусталика, где фокусировка наиболее точная. Сужение зрачка направлено на сохранение наиболее возможной при данных условиях освещенности глубины резкости.

Роговица и коньюктива покрыты тонкой пленкой слезной жидкости, секретируемой в слезных железах, расположенных в височной части глазницы, над глазным яблоком. Слезы защищают роговицу и коньктиву от высыхания.

Позади радужной оболочки расположены задняя камера глаза и хрусталик. Хрусталик -- двояковыпуклая линза, расположенная в сумке, волокна которой соединены с ресничными мышцами и наружным сосудистым слоем сетчатки. Хрусталик может становиться более плоским или более выпуклым в зависимости от расстояния между глазом и объектом. Изменение кривизны хрусталика называетсяаккомодацией. Внутри глаза, позади хрусталика, находится стекловидное тело. Оно представляет собой коллоидный раствор гиалуроновой кислоты во внеклеточной жидкости.

Аккомодация хрусталика иногда оказывается недостаточной, чтобы спроецировать изображение точно на сетчатку. Если расстояние между хрусталиком и сетчаткой больше, чем фокусное расстояние хрусталика, то возникает близорукость (миопия). Если сетчатка расположена слишком близко к хрусталику и фокусировка хороша только при рассматривании далеко расположенных предметов, возникаетдальнозоркость (гиперметропия). Близорукость и дальнозоркость корректируются очками с вогнутыми и выпуклыми линзами соответственно.

В классификации рецепторов центральное место занимает их деление в зависимости от вида воспринимаемого раздражителя. Существует пять типов таких рецепторов.

1. Механорецепторы возбуждаются при их механической деформации, расположены в коже, сосудах, внутренних органах, опорно-двигательном аппарате, слуховой и вестибулярной системах.

2. Хеморецепторы воспринимают химические изменения внешней и внутренней среды организма. К ним относятся вкусовые и обонятельные рецепторы, а также рецепторы, реагирующие на изменение состава крови, лимфы, межклеточной и цереброспинальной жидкости (изменение напряжения О2 и СО2, осмолярности и рН, уровня глюкозы и других веществ). Такие рецепторы есть в слизистой оболочке языка и носа, каротидном и аортальном тельцах, гипоталамусе и продолговатом мозге.

3. Терморецепторы воспринимают изменения температуры. Они подразделяются на тепловые и холодовые рецепторы и находятся в коже, слизистых оболочках, сосудах, внутренних органах, гипоталамусе, среднем, продолговатом и спинном мозге.

4. Фоторецепторы в сетчатке глаза воспринимают световую (электромагнитную) энергию.

5. Ноцицепторы, возбуждение которых сопровождается болевыми ощущениями (болевые рецепторы). Раздражителями этих рецепторов являются механические, термические и химические (гистамин, брадикинин, К+, Н+ и др.) факторы. Болевые стимулы воспринимаются свободными нервными окончаниями, которые имеются в коже, мышцах, внутренних органах, дентине, сосудах.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]