Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
анатомия полный вариант.docx
Скачиваний:
21
Добавлен:
23.09.2019
Размер:
445.9 Кб
Скачать

10. Принципы классификации и функциональная роль нейронов Морфология нейронов

Структура нервных клеток различна. Существуют многочисленные классификации нервных клеток, основанные на форме их тела, протяженности и форме дендритов и других признаках. По функциональному значению нервные клетки подразделяются на двигательные (моторные), чувствительные (сенсорные) и интернейроны. Нервная клетка осуществляет две основные функции: а) специфическую — переработка поступающей на нейрон информации и передача нервного импульса; б) биосинтетическую для поддержания своей жизнедеятельности.

Безаксонные нейроны — небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.

Униполярные нейроны — нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге.

Биполярные нейроны — нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях.

Мультиполярные нейроны — нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе.Псевдоуниполярные нейроны — являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная классификация

По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Афферентные нейроны (чувствительный, сенсорный или рецепторный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный или моторный). К нейронам данного типа относятся конечные нейроны — ультиматные и предпоследние — не ультиматные.

Ассоциативные нейроны (вставочные или интернейроны) — группа нейронов осуществляет связь между эфферентными и афферентными, их делят на интризитные, комиссуральные и проекционные.

Секреторные нейроны — нейроны, секретирующие высокоактивные вещества (нейрогормоны). У них хорошо развит комплекс Гольджи, аксон заканчивается аксовазальными синапсами. нейроны — являются основными структурными и функци­ональными единицами нервной системы. Эта доктрина базируется на следу­ющих основных положениях. Каждый нейрон является анатомической единицей. Это означает, что нейрон представляет собой клетку, в которой, как и в других клетках, имеется ядро и цитоплазма. Снаружи нервная клетка окружена оболоч­кой — плазматической мембраной, или плазмалеммой. В цитоплазме нейрона содержатся органеллы общего значения: эндоплазматический ретикулум, рибосомы, митохондрии и т. п., а также специальные органел­лы: нейрофибриллы, построенные из белковых молекул длинные тонкие опорные нити, и тигроидное вещество, или вещество Ниссля, представля­ющее собой участки цитоплазмы с большим содержанием рибосом. Каждый нейрон является генетической единицей. Развиваясь из эмбриональной нервной клетки — нейробласта, — расположенной в нервной трубке или в ганглионарной пластинке, каждый нейрон содержит генетически запрограммированный код, определяющий специфику его строения, метаболизма и связей с соседними нейронами (рис. 18). Основные связи нейронов генетически запрограммированы. Однако это не исключает возможности модификации нейронных связей в про­цессе индивидуального развития при обучении и формировании различных навыков. Каждый нейрон является функциональной единицей. Иными слова­ ми, каждый нейрон представляет собой ту элементарную структуру, которая способна воспринимать раздражение и возбуждаться, а также передавать возбуждение в форме нервного импульса соседним нейро­ нам или иннервируемым органам и мышцам. Каждый нейрон представляет собой поляризационную единицу, т.е. он проводит нервный импульс только в одном направлении. В силу этого отростки нейрона подразделяются на дендриты, которые прово­дят возбуждение к телу нейрона, и аксон, кия нейрит, проводящий воз­буждение от тела клетки. Каждый нейрон есть рефлекторная единица. Нейрон является элемен­тарной составной частью той или иной рефлекторной дуги, по которой осуществляется проведение импульсов в нервной системе от рецепто­ров, воспринимающих средовые воздействия, до эффекторных орга­нов, участвующих в ответной реакции на эти воздействия. Каждый нейрон является патологической единицей. Любая часть нер­вной клетки и ее отростков, отделенная путем повреждения от ее тела, погибает и подвергается распаду, или дегенерации. Хотя различные нейроны по-разному реагируют на повреждение, тем не менее при достаточно обширном повреждении цитоплазмы или ядра любого ней­рона он погибает.Погибшие нейроны не возмещаются. В случае их гибели после рождения число нейронов не может быть восполнено. Тем не менее при повреждении аксона его восстановление возможно путем роста отростка и воссоздания ут­раченных им в результате повреждения связей. Это наблюдается в перифери­ческой нервной системе при повреждении нервов.

11. Нейроглия: общая характеристика, классификация и функциональная роль основных типов глиальных клеток. Помимо нейронов нервная ткань содержит клетки еще одного типа - клетки глии,  глиальные клетки, или глия (от греч. "глия" - клей). Они выполняют опорную и защитную функции , а также участвуют в нейронофагии. По численности их  в 10 раз больше, чем нейронов (10 в 13-ой и 10 в 12-ой степени, соответственно) и они занимают половину объема центральной нервной системы (ЦНС). Глиальные клетки окружают нервные клетки и играют вспомогательную роль Глиальные клетки более многочисленные, чем нейроны: составляют по крайней мере половину объема ЦНС. Между нейронами и глиальными клетками существуют сообщающиеся между собой щели размером 15-20 нм, так называемое интерстициальное пространство , занимающее 12-14% общего объема мозга. Глиальные клетки невозбудимы:  во время деполяризации глиальных клеток проводимость их мембран не повышается.

Типы нейроглии

Преимущественная локализация

Функциональное значение

Астроглия

Серое и белое вещество головно-

го и спинного мозга

Обеспечение   транспорта   ве-

ществ из кровеносных капил-

ляров к нервным клеткам; учас-

тие в образовании гематоэнце-

фалического барьера

Олигодендроглия

Белое   вещество   головного   и

спинного мозга, периферические

нервы

Окружает нервные клетки и их

аксоны;образует вокруг нерв-

ных волокон миелиновую обо-

лочку, играющую роль биологи-

ческого   изолятора,   который

препятствует распространению

возбуждения на соседние нейро-

ны. Не исключено участие в

поляризации   и   метаболизме

нервных клеток

Микроглия

Белое   вещество   головного   и

спинного мозга преимуществен-

но около кровеносных сосудов

Выполняет   защитную    роль,

сходную с ролью макрофагов;

предотвращает    попадание    в

нервную систему чужеродных

субстанций

Эпендима

Выстилает все внутренние по-

лости в головном и спинном

мозге

Выполняет роль барьера между

веществом мозга и омывающей

его спинномозговой жидкостью;

регулирует секрецию и состав

спинномозговой жидкости

Билет№12 Общее представление о строении и функциональной роли рецепторов.

Реце́птор — сложное образование, состоящие из терминалей (нервных окончаний) дендритов чувствительных нейронов, глии, специализированных образований межклеточного вещества и специализированных клеток других тканей, которые в комплексе обеспечивают превращение влияния факторов внешней или внутренней среды (раздражитель) в нервный импульс.

По внутреннему строению рецепторы бывают как простейшими, состоящими из одной клетки, так и высокоорганизованными, состоящими из большого количества клеток, входящих в состав специализированного органа чувств. Животные могут воспринимать информацию следующих типов:

Класификация

Существуют несколько классификаций рецепторов:

По положению

Экстерорецепторы (экстероцепторы) — расположены на поверхности или вблизи поверхности тела и воспринимают внешние стимулы (сигналы из окружающей среды)

Интерорецепторы (интероцепторы) — расположены во внутренних органах и воспринимают внутренние стимулы (например, информацию о состоянии внутренней среды организма)

Проприорецепторы (проприоцепторы) — рецепторы опорно-двигательного аппарата, позволяющие определить, например, напряжение и степень растяжения мышц и сухожилий. Являются разновидностью интерорецепторов.

По способности воспринимать разные стимулы

Мономодальные — реагирующие только на один тип раздражителей (например, фоторецепторы — на свет)

Полимодальные — реагирующие на несколько типов раздражителей (например. многие болевые рецепторы, а также некоторые рецепторы беспозвоночных, реагирующие одновременно на механические и химические стимулы).

По адекватному раздражителю

Хеморецепторы — воспринимают воздействие растворенных или летучих химических веществ.

Осморецепторы — воспринимают изменения осмотической концентрации жидкости (как правило, внутренней среды).

Механорецепторы — воспринимают механические стимулы (прикосновение, давление, растяжение, колебания воды или воздуха и т. п.)

Фоторецепторы — воспринимают видимый и ультрафиолетовый свет

Терморецепторы — воспринимают понижение (холодовые) или повышение (тепловые) температуры

Болевые рецепторы, стимуляция которых приводит к возникновению боли. Такого физического стимула, как боль, не существует, поэтому выделение их в отдельную группу по природе раздражителя в некоторой степени условно.

Электрорецепторы — воспринимают изменения электрического поля

Магнитные рецепторы — воспринимают изменения магнитного поля

Иногда предлагается выделять группу электромагнитных рецепторов, в которую включают фото-, электро- и магниторецепторы. Магниторецепторы точно не идентифицированы ни у одной группы животных, хотя предположительно ими служат некоторые клетки сетчатки птиц, а возможно, и ряд других клеток.

Билет№13строение,классификация и функциональная роль синапсов.

Си́напс (греч. σύναψις, от συνάπτειν — обнимать, обхватывать, пожимать руку) — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться.

Термин был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном.

Структура синапса

Синапс представляет собой пространство, разделяющее мембраны контактирующих клеток, к которым подходят нервные окончания. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.

Между обеими частями имеется синаптическая щель — промежуток шириной 10—50 нм между постсинаптической и пресинаптической мембранами, края которой укреплены межклеточными контактами.

Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели, называется пресинаптической мембраной. Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной, в химических синапсах она рельефна и содержит многочисленные рецепторы.

В синаптическом расширении имеются мелкие везикулы, так называемые синаптические пузырьки, содержащие либо медиатор (вещество-посредник в передаче возбуждения), либофермент, разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

Классификации синапсов

В зависимости от механизма передачи нервного импульса различают

химические; электрические — клетки соединяются высокопроницаемыми контактами с помощью особых коннексонов (каждый коннексон состоит из шести белковых субъединиц)

Электрические синапсы обычно бывают возбуждающими.

смешанные синапсы: Пресинаптический потенциал действия создает ток, который деполяризует постсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом.

Наиболее распространены химические синапсы.

Химические синапсы можно классифицировать по их местоположению и принадлежности соответствующим структурам:

периферические,нервно-мышечные, нейросекреторные (аксо-вазальные)

рецепторно-нейрональные, центральные, аксо-дендритические — с дендритами, в т. ч., аксо-шипиковые — с дендритными шипиками, выростами на дендритах; аксо-соматические — с телами нейронов; аксо-аксональные — между аксонами; дендро-дендритические — между дендритами; В зависимости от медиатора синапсы разделяются на

аминергические, содержащие биогенные амины (например, серотонин, дофамин;) в том числе адренергические, содержащие адреналин или норадреналин; холинергические, содержащие ацетилхолин; пуринергические, содержащие пурины; пептидергические, содержащие пептиды. При этом в синапсе не всегда вырабатывается только один медиатор. Обычно основной медиатор выбрасывается вместе с другим, играющим роль модулятора. По знаку действия: возбуждающие, тормозные.

Если первые способствуют возникновению возбуждения в постсинаптической клетке, то вторые, напротив, прекращают или предотвращают его появление, препятствуют дальнейшему распространению импульса.

14. Общее представление о закономерностях развития нервной системы в онтогенезе человека.

Онтогенез (от греч. ón, род. падеж óntos — сущее и генез), индивидуальное развитие организма, совокупность последовательных морфологических, физиологических и биохимических преобразований, претерпеваемых организмом от момента его зарождения до конца жизни. О. включает рост, т. е. увеличение массы тела, его размеров, дифференцировку.

Онтогенез, или индивидуальное развитие организма, делится на два периода: пренатальный (внутриутробный) и постнатальный (после рождения). Первый продолжается от момента зачатия и формирования зиготы до рождения; второй - от момента рождения и до смерти. Пренатальный период в свою очередь подразделяется на три периода: начальный, зародышевый и плодный. Начальный (предимплантационный) период у человека охватывает первую неделю развития (с момента оплодотворения до имплантации в слизистую оболочку матки). Зародышевый (предплодный, эмбриональный) период - от начала второй недели до конца восьмой недели (с момента имплантации до завершения закладки органов). Плодный (фетальный) период начинается с девятой недели и длится до рождения. В это время происходит усиленный рост организма. Постнатальный период онтогенеза подразделяют на одиннадцать периодов: 1-й - 10-й день - новорожденные; 10-й день - 1 год - грудной возраст; 1-3 года - раннее детство; 4-7 лет - первое детство; 8-12 лет - второе детство; 13-16 лет - подростковый период; 17-21 год - юношеский возраст; 22-35 лет - первый зрелый возраст; 36-60 лет - второй зрелый возраст; 61-74 года- пожилой возраст; с 75 лет - старческий возраст, после 90 лет - долгожители. Завершается онтогенез естественной смертью.

Пренатальный период онтогенеза начинается с момента слияния мужских и женских половых клеток и образования зиготы. Зигота последовательно делится, образуя шаровидную бластулу. На стадии бластулы идет дальнейшее дробление и образование первичной полости - бластоцеля. Затем начинается процесс гаструляции, в результате которого происходит перемещение клеток различными способами в бластоцель, с образованием двухслойного зародыша. Наружный слой клеток называется эктодерма, внутренний - энтодерма. Внутри образуется полость первичной кишки - гастроцель. Это стадия гаструлы. На стадии нейрулы образуются нервная трубка, хорда, сомиты и другие эмбриональные зачатки. Зачаток нервной системы начинает развиваться еще в конце стадии гаструлы. Клеточный материал эктодермы, расположенный на дорсальной поверхности зародыша, утолщается, образуя медуллярную пластинку (рис. 17, 2). Эта пластинка ограничивается с боков медуллярными валиками. Дробление клеток медуллярной пластинки (медуллобластов) и медуллярных валиков приводит к изгибанию пластинки в желоб, а затем к смыканию краев желоба и образованию медуллярной трубки (рис. 16а, 1). При соединении медуллярных валиков образуется ганглиозная пластина, которая затем делится на ганглиозные валики