Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экология экзамен.docx
Скачиваний:
8
Добавлен:
20.09.2019
Размер:
391.75 Кб
Скачать

Экология.

  1. Термин «экология» (от греческого oikos— дом, жилище, место обитания и logos— наука) был введен в научный оборот немецким ученым Э. Геккелем в 1869 году. Им же было дано одно из первых определений экологии как науки, хотя те или иные ее элементы содержатся в трудах многих ученых, начиная с мыслителей Древней Греции. Биолог Э. Геккель рассматривал в качестве предмета экологии взаимоотношения животного с окружающей средой, и, первоначально, экология развивалась как биологическая наука. Однако постоянно возрастающий антропогенный фактор, резкое обострение отношений природы и человеческого общества, возникновение необходимости охраны окружающей среды неизмеримо расширили рамки предмета экологии. В настоящий момент экологию необходимо рассматривать как комплексное научное направление, которое обобщает, синтезирует данные естественных и социальных наук о природной среде и взаимодействии ее с человеком и человеческим обществом. Она действительно стала наукой о «доме», где «дом» (oikos) — вся наша планета Земля. Экологизация коснулась практически всех отраслей знаний, что привело к возникновению целого ряда направлений экологической науки. Эти направления классифицируются по предмету изучения, основным объектам, средам и т.п. Экологический цикл знаний включает около 70 крупных научных дисциплин, а экологический лексикон насчитывает примерно 14 тыс. понятий и терминов. К сожалению, единой общепринятой классификации направлений экологии не существует. Блок «Охрана окружающей среды» (по отраслям деятельности) далее будет специально рассмотрен с учетом экологических проблем совместно с блоками «Социальная экология» и «Ноосферология».тВ экологии, отдавая дань ее возникновению как естественной науки, выделяют динамическую и аналитическую ветви. Динамическая экология (эволюционно-динамическая) изучает динамику и эволюцию отношений организмов и их групп со средой обитания. Аналитическая экология — раздел экологии, исследующий основные закономерности взаимоотношения организмов и их популяций с природной средой.Общая экология (биоэкология) исследует основные принципы организации и функционирования различных надорганизменных систем. Содержание разделов общей экологии приведено в табл. 1.1. Структура общей (биологической) экологии

Разделы экологии

Их содержание

Экология организмов, или аутэкология

Взаимодействия между отдельными организмами и факторами среды или средами жизни

Популяционная экология, или демэкология

Взаимоотношения между организмами одного вида (в пределах популяций) и средой обитания. Экологические закономерности существования популяций

Учение об экосистемах (биогеоценозах), или синэкология

Взаимоотношения организмов разных видов (в пределах биоценозов) и среды их обитания как единого целого. Экологические закономерности функционирования экосистем

Сфера частной экологии ограничена изучением конкретных групп определенного ранга — экология растений, экология животных, экология микроорганизмов. Существует и более дробное деление разделов частной экологии: экология позвоночных, экология млекопитающих и т.д.

 

Происходит постоянное расширение сферы исследований экологии. Появились математическая, географическая, глобальная, космическая экология, палеоэкология, радиоэкология, экологическая минералогия, экотоксикология и др.

Среди экологических наук особое место занимает социальная экология, рассматривающая взаимоотношения в глобальной системе «человеческое общество—окружающая среда» и изучающая взаимодействия человеческого общества с природной и созданной им техногенной средой. Социальная экология разрабатывает научные основы природопользования, предполагающие повышение качества жизни человека в среде его обитания с одновременным обеспечением сохранения природы.

Экология человека включает экологию города, экологию народонаселения, экологию человеческой личности, экологию человеческих популяций (учение об этносах) и т.д.

На стыке экологии человека и строительной экологии сформировалась архитектурная экология, которая изучает методы создания для людей комфортной, долговечной и выразительной окружающей среды. Экологически недопустимо разрушение архитектурной среды города, часто возникающее при отсутствии композиционно-художественной связи новых и старых объектов и проч., поскольку архитектурная дисгармония вызывает снижение работоспособности и ухудшение здоровья человека.

К архитектурной экологии непосредственно примыкает новое научное направление — видеоэкология, изучающая взаимодействие человека с видимой средой. Видеоэкологи считают опасными для человека на физиологическом уровне так называемые гомогенные и агрессивные визуальные поля. Первые — это голые стены, стеклянные витрины, глухие заборы, плоские крыши зданий и др., вторые — всевозможные поверхности, испещренные одинаковыми, равномерно расположенными элементами, от которых рябит в глазах (плоские фасады домов с одинаковыми окнами, большие поверхности, облицованные прямоугольными плитками, и т.д.).

Среди перечисленных наук особенно актуально сегодня в общей и прикладной экологии сопряжение знаний о направлениях формирования и охраны окружающей среды обитания человека. В этой сфере знаний («средологии») особенно важным становится сохранение культурной среды обитания человека.

В настоящее время происходит формирование новой ветви экологической науки — реставрационной экологии. Эта сфера включает знание законов и механизмов системных взаимодействий среды и памятника, их места в экосистемах, изучение влияния экологических факторов и, в частности, микробиогенных, на повреждение материала памятника. Эти знания сегодня практически необходимы и являются основой формирования экологического мировоззрения в реставрационной деятельности, экологических принципов сохранения культурного наследия. Составной частью знаний в этой области должно стать изучение опыта (информационного ресурса) древних зодчих. Они хорошо знали законы природы и строили качественно и на века. Сегодня новые, агрессивные условия эксплуатации памятников архитектуры требуют новых экологически обоснованных технологий реставрации, учитывающих изменения этих условий.

Ноосферология (ноосфера — «сфера разума») изучает возможности формирования высшей стадии развития биосферы, связанной с возникновением и становлением в ней цивилизованного общества, когда разумная деятельность человека становится главным определяющим фактором развития. Понятие ноосферы ввел французский математик и философ Е. ле Руа, а теоретически разработал и развил в своих работах В.И. Вернадский.

Развивается новое направление в экологии — глубокая экология, основными положениями которой являются:

• признание самостоятельной ценности всех форм жизни, независимо от их полезности для человека;

• осознание богатства и разнообразия форм жизни, имеющих собственную ценность и способствующих расцвету человечества;

• человек не имеет права уменьшать богатство и разнообразие форм жизни (исключая случаи удовлетворения его насущных потребностей);

• расцвет человечества и его культуры может происходить в условиях сокращения его численности;

• современное вмешательство человека в другие формы жизни носит избыточный характер, и ситуация быстро ухудшается, что вызывает необходимость изменения технологий, экономики и идеологических структур взаимоотношения человека с другими формами жизни;

• основное идеологическое изменение — признание качества жизни человека важнейшим показателем.

С идеями глубокой экологии во многом смыкается концепция инвайронментализма (environment — окружающая среда), основные направления которого — радикальное преобразование системы ценностей общества, отрицание антропоцентризма и ограничение экономического роста и экологически неоправданного поведения.

  1. В тетради II вопрос 1 страница

  2. Экологическиепроблемы - ответная реакция природы в виде естественных явлений на антропогенные воздействия. Экологический фактор - это любое условие среды, способное оказывать прямое или косвенное влияние на живые организмы. В свою очередь организм реагирует на экологический фактор приспособительными реакциями.

Под экологическими проблемами в наше время, как правило, понимают все сильнее нарастающее критическое состояние окружающей среды, которое в первую очередь вызвано всевозможной деятельностью всего человечества. Начавшиеся в прошлом веке революционные прорывы в развитии таких производственных сфер как транспорт, энергетика, машиностроение, химия и многих других, неминуемо привели к тому, что данная человеческая деятельность по своим масштабам превысила естественные энергетические и материальные процессы, происходящие в биологической сфере планеты. Последствия такой деятельности в первую очередь проявляются на общем экологическом состоянии нашей планеты. Экологические процессы в биологической сфере планеты полностью взаимосвязаны и неразрывны. Поэтому нарушение одних процессов влечет за собой различные сдвиги в других экологических системах планеты.Каждый год из недр земли безвозвратно извлекается более ста миллиардов тонн различных полезных ископаемых, вносится в почву свыше пятисот миллионов тонн всевозможных минеральных удобрений и порядка трех миллионов тонн всевозможных ядохимикатов.

Треть всех этих химикатов естественным (или промышленным) путем смывается поверхностными стоками в различные водоемы, либо задерживается атмосферой планеты.На сегодняшний день достаточно быстрыми темпами увеличивается концентрация СО2 в атмосфере планеты. Пока данная концентрация не превышает один процент (его превышение считается опасным для здоровья человека), но если не начать предпринимать меры уже сейчас, то это неминуемо приведет к ее превышению. Проблема истощения таких ресурсов как водные с очень высоким водопотреблением и загрязнением подземных и поверхностных вод.

Вследствие чего во многих районах мира наблюдается острый дефицит воды.Очень сильно жителей планеты тревожит такая проблема как наличие необходимых земельных ресурсов. Уменьшение земельного фонда, прежде всего, вызвано разного рода строительством, горнопромышленными разработками, эрозией и засолением почв и все более усиливающимся опустыниванием различных территорий.Особо остро стоит проблема очень быстрого сокращения всевозможных лесных площадей, особенно это касается тропических лесов.

Если исходить из официальных данных, то за последние тридцать лет площадь лесов сократилось на один миллиард гектар – это 20% совокупной площади всех лесов на планете.Помимо этого существуют и такие глобальные экологические проблемы современности как, например: - разрушение озонового слоя; - загрязнение Мирового океана; - радиоактивное загрязнение территории планеты; - уменьшение разнообразия флоры и фауны планеты.

Данный список можно продолжать еще достаточно долго, главное то, чтобы человечество поняло важность и необходимость последовательного решения насущных экологических проблем, которое приведет к снижению его негативного воздействия на природу в целом, а также каждого человека в отдельности.

4 Экологические факторы среды, с которыми связан любой организм, делятся на 2 категории:

1) Факторы неживой природы (абиотические) 2) Факторы живой природы (биотические)

Экологические факторы среды могут оказывать на живые организмы воздействия разного рода: 1) раздражители, вызывающие приспособительные изменения физиологических и биохимических функций (например, повышение температуры воздуха ведет к увеличению потоотделения у млекопитающих и к охлаждению тела); 2) ограничители, обусловливающие невозможность существования в данных условиях (например, недостаток влаги в засушливых районах препятствует проникновению туда многих организмов); 3) модификаторы, вызывающие анатомические и морфологические изменения организмов (например, запыленность окружающей среды в индустриальных районах некоторых стран привела к образованию черных бабочек березовых пядениц, сохранивших свою светлую окраску в сельских местностях); 4) сигналы, свидетельствующие об изменении других факторов среды.

5.Среди абиотических факторов выделяют:

     Климатические (влияние температуры, света и влажности);

     Геологические (землетрясение, извержение вулканов, движение ледников, сход селей и лавин и др.);

     Орографические (особенности рельефа местности, где обитают изучаемые организмы).

Рассмотрим действие основных прямодействующих абиотических факторов: света, температуры и наличия воды. Температура, свет и влажность являются наиболее важными факторами внешней среды. Эти факторы закономерно изменяются как в течение года и суток, так и в связи с географической зональностью. К этим факторам организмы обнаруживают зональный и сезонный характер приспособления.

Свет как экологический фактор

Солнечное излучение является основным источником энергии для всех процессов, происходящих на Земле. В спектре солнечного излучения можно выделить три области, различные по биологическому действию: ультрафиолетовую, видимую и инфракрасную.  

Растения, в зависимости от условий обитания, адаптируются к тени - теневыносливые растения или, напротив, к солнцу - светолюбивые растения (к примеру, хлебные злаки). Однако сильное яркое солнце (яркость выше оптимальной) подавляет фотосинтез, поэтому в тропиках трудно получить высокий урожай культур, богатый белком. В умеренных зонах (выше и ниже экватора) цикл развития растений и животных приурочен к сезонам года: подготовка к изменению температурных условий осуществляется на основе сигнала - изменения длины дня, которая в определенное время года в данном месте всегда одинакова. В результате этого сигнала включаются физиологические процессы, приводящие к росту, цветению растений весной, плодоношения летом и сбрасывания листьев осенью; у животных - к линьке, накоплению жира, миграции, размножению у птиц и млекопитающих, наступлению стадии покоя у насекомых.  Изменение длины дня животные воспринимают с помощью органов зрения. А растения - с помощью специальных пигментов, расположенных в листьях растений. Раздражения воспринимаются с помощью рецепторов, вследствие чего происходит ряд биохимических реакций (активация ферментов или выделение гормонов), а затем проявляются физиологические или поведенческие реакции.

Изучение фотопериодизма растений и животных показало, что реакция организмов на свет основана не просто на количестве получаемого света, а на чередовании в течение суток периодов света и темноты определенной длительности.  Организмы способны измерять время, т.е.  обладают “биологическими часами” - от одноклеточных до человека. “Биологические часы” - также управляются сезонными циклами и другими биологическими явлениями.  “Биологические часы” определяют суточный ритм активности как целых организмов, так и процессов, происходящих даже на уровне клеток, в частности клеточных делений.

Температура как экологический фактор

Все химические процессы, протекающие в организме, зависят от температуры. Изменения тепловых условий, часто наблюдаемые в природе, глубоко отражаются на росте, развитии и других проявлениях жизнедеятельности животных и растений. Различают организмы с непостоянной температурой тела - пойкилотермные и организмы с постоянной температурой тела - гомойтермные.  Пойкилотермные животные целиком зависят от температуры окружающей среды, тогда как гомойтермные способны поддерживать постоянную температуру тела независимо от изменений температуры окружающей среды.  Подавляющее большинство наземных растений и животных в состоянии активной жизнедеятельности не переносит отрицательной температуры и погибает. Верхний температурный предел жизни неодинаков для разных видов - редко выше 40-45 оС. Некоторые цианобактерии и бактерии обитают при температурах 70-90 оС, в горячих источниках могут жить и некоторые моллюски (до 53 оС). Для большинства наземных животных и растений оптимум температурных условий колеблется в довольно узких пределах (15-30 оС). Верхний порог температуры жизни определяется температурой свертывания белков, поскольку необратимое свертывание белков (нарушение структуры белков) возникает при температуре около 60 oС.

Пойкилотермные организмы в процессе эволюции выработали различные приспособления к изменяющимся температурным условиям среды. Главным источником поступления тепловой энергии у пойкилотермных животных - внешнее тепло. У пойкилотермных организмов выработались различные приспособления к низкой температуре. Некоторые животные, например, арктические рыбы, обитающие постоянно при температуре -1,8 oС, содержат в тканевой жидкости вещества (гликопротеиды), препятствующие образованию кристаллов льда в организме; у насекомых накапливается для этих целей глицерин. Другие животные, наоборот, увеличивают теплопродукцию организма за счет активного сокращения мускулатуры - так они повышают температуру тела на несколько градусов. Третьи регулируют свой теплообмен за счет обмена тепла между сосудами кровеносной системы: сосуды, выходящие из мышц, тесно соприкасаются с сосудами, идущими от кожи и несущими охлажденную кровь (такое явление свойственно холодноводным рыбам). Адаптивное поведение проявляется в том, что многие насекомые, рептилии и амфибии выбирают места на солнце для обогрева или меняют различные позы для увеличения поверхности обогрева.

У ряда холоднокровных животных температура тела может меняться в зависимости от физиологического состояния: к примеру, у летающих насекомых внутренняя температура тела может подниматься на 10-12 oС и более вследствие усиленной работы мышц. У общественных насекомых, особенно у пчел, развился эффективный способ поддержания температуры путем коллективной терморегуляции (в улье может поддерживаться температура 34-35 oС, необходимая для развития личинок).

Пойкилотермные животные способны приспосабливаться и к высоким температурам. Это происходит также разными способами: теплоотдача может происходить за счет испарения влаги с поверхности тела или со слизистой верхних дыхательных путей, а также   за счет подкожной сосудистой регуляции (например, у ящериц скорость тока крови по сосудам кожи увеличивается при повышении температуры).

Наиболее совершенная терморегуляция наблюдается у птиц и млекопитающих - гомойтермных животных. В процессе эволюции они приобрели способность поддерживать постоянную температуру тела благодаря наличию четырехкамерного сердца и одной дуги аорты, что обеспечило полное разделение артериального и венозного кровотока; высокого обмена веществ; перьевого или волосяного покрова; регуляции теплоотдачи; хорошо развитой нервной системы приобрели способность к активной жизни при разной температуре. У большинства птиц температура тела несколько выше 40 oС, а у млекопитающих - несколько ниже. Весьма важное значение для животных имеет не только способность к терморегуляции, но и адаптивное поведение, постройка специальных убежищ и гнезд, выбор места с более благоприятной температурой и т.п. Они также способны приспосабливаться к низким температурам несколькими путями: кроме перьевого или волосяного покрова, теплокровные животные с помощью дрожи (микросокращения внешне неподвижных мышц) уменьшают теплопотери; при окислении бурой жировой ткани у млекопитающих образуется дополнительная энергия, поддерживающая обмен веществ.

Приспособление теплокровных к высоким температурам во многом сходно с аналогичными приспособлениями холоднокровных - потоотделение и испарение воды со слизистой рта и верхних дыхательных путей, у птиц - только последний способ, так как у них нет потовых желез; расширение кровеносных сосудов, расположенных близко к поверхности кожи, что усиливает теплоотдачу (у птиц этот процесс протекает в неоперенных участках тела, например через гребень). Температура, как и световой режим, от которого она зависит, закономерно меняется в течение года и в связи с географической широтой. Поэтому все приспособления более важны для обитания при отрицательных температурах.

Вода как экологический фактор

Вода играет исключительную роль в жизни любого организма, поскольку она является структурным компонентом клетки (на долю воды приходится 60-80% массы клетки). Значение воды в жизни клетки определяется ее физико-химическими свойствами. Вследствие полярности молекула воды способна притягиваться к любым другим молекулам, образуя гидраты, т.е. является растворителем. Многие химические реакции могут протекать происходить только в присутствии воды.  Вода является в живых системах “тепловым буфером”, поглощая тепло при переходе из жидкого состояния в газообразное, тем самым предохраняя неустойчивые структуры клетки от повреждения при кратковременном освобождении тепловой энергии. В связи с этим она производит охлаждающий эффект при испарении с поверхности и регулирует температуру тела. Теплопроводные свойства воды определяют ее ведущую роль терморегулятора климата в природе. Вода медленно нагревается и медленно охлаждается: летом и днем вода морей океанов и озер нагревается, а ночью и зимой также медленно охлаждается. Между водой и воздухом происходит постоянный обмен углекислым газом.  Кроме того, вода выполняет транспортную функцию, перемещая вещества почвы сверху вниз и обратно. Роль влажности для наземных организмов обусловлена тем, что осадки распределяются на земной поверхности в течение года неравномерно. В засушливых районах (степи, пустыни) растения добывают себе воду с помощью сильно развитой корневой системы, иногда очень длинных корней (у верблюжьей колючки - до 16 м), достигающих влажного слоя. Высокое осмотическое давление клеточного сока (до 60-80 атм), увеличивающее сосущую силу корней, способствует удержанию воды в тканях. В сухую погоду растения снижают испарение воды: у пустынных растений утолщаются покровные ткани листа, либо на поверхности листьев развивается восковой слой или густое опушение. Ряд растений достигает снижения влаги уменьшением листовой пластинки (листья превращаются в колючки, часто растения полностью теряют листья - саксаул, тамариск и др.).

В зависимости от требований, предъявляемых к водному режиму, среди растений различают следующие экологические группы:

   Гидратофиты – растения постоянно живущие в воде;

 Гидрофиты- растения лишь частично погружаемые в воду;

 Гелофиты- болотные растения;

 Гигрофиты- наземные растения, обитающие в чрезмерно увлажненых местах;

 Мезофиты- предпочитают умеренное увлажнение;

  Ксерофиты-  растения, приспособленные к постоянном недостатку влаги; среди ксерофитов различают:

суккуленты- накапливающие воду в тканях своего тела (сочные);

склерофиты- теряющие значительное количество воды.

Многие животные пустынь способны обходиться без питьевой воды; некоторые быстро и долго могут бегать, совершая длинные миграции на водопой (сайгаки, антилопы, верблюды и др.); часть животных добывает воду из пищи (насекомые, пресмыкающиеся, грызуны).  Жировые отложения пустынных животных могут служить своеобразным резервом воды в организме: при окислении жиров образуется вода (отложения жира в горбе верблюдов или подкожные отложения жира у грызунов).  Малопроницаемые покровы кожи (например, у пресмыкающихся,) защищают животных от потери влаги. Многие животные перешли к ночному образу жизни или скрываются в норах, избегая иссушающего действия низкой влажности и перегрева. В условиях периодической сухости ряд растений и животных переходят в состояние физиологического покоя - растения приостанавливают рост и сбрасывают листья, животные впадают в спячку. Эти процессы сопровождаются пониженным обменом веществ в период сухости

6. Распределение организмов в биосфере и их существование неразрывно связаны с прямыми или косвенными контактами между ними. К биотическим факторам, относятся все живые организмы окружающие данный организм и оказывающие на него прямое или косвенное влияние в результате своей жизнедеятельности. Поскольку организмы могут принадлежать к одному виду или нескольким видам, постольку различаются внутривидовые и межвидовые экологические факторы.

Внутривидовые факторы. Для каждой особи вида все остальные особи этого же вида, окружающие ее или вступающие с ней в какие-либо отношения, составляют часть среды обитания и оказывают на нее внутривидовое воздействие. Внутривидовыми факторами являются: численность, плодовитость (у растении семенная продуктивность), продолжительность жизни и плотность, этологический фактор, групповой эффект и конкуренция.

Численность вида или его экологически и географически обособленных групп характеризуется количеством особей на определенной территории. Она выражается абсолютным значением или балльной оценкой.

Подсчет особей, особенно в мире микроорганизмов, растений и насекомых, не всегда возможен. Если число медведей в заповеднике лесной зоны подсчитать нетрудно, то количество травянистых растений и грибов установить таким же образом практически нельзя. В этом случае пользуются соответствующими шкалами оценок.

Численность вида или его экологически и географически обособленных групп не может расти до бесконечности. В конечном итоге наступает насыщение им среды обитания и дальнейшее увеличение численности становится невозможным.

Плодовитость — это эволюционно сложившаяся способность животных приносить свойственный каждому виду приплод, компенсирующий естественную смертность. Она обычно характеризуется коэффициентом рождаемости или размножаемости. Для растений употребляются термины «семенная продуктивность», «урожайность», которые отражают массу семян или плодов растений, приходящуюся на единицу площади.

Продолжительность жизни измеряется временем, которое протекает между рождением и смертью организма. Средняя продолжительность жизни вида соответствует средней продолжительности жизни каждой особи.

Плотность представляет собой количество особей вида, приходящихся на единицу площади. Она непосредственно связана с численностью вида или его отдельных групп на конкретной местности. Чем выше численность вида, его плодовитость (продуктивность), плотность, продолжительность жизни, тем быстрее идет насыщение видом среды обитания вплоть до того момента, когда увеличение численности уже невозможно.

Этологический фактор (от греч. ethos — нрав, характер) - это поведение животных, способное оказывать влияние на другие биотические факторы. Примером может служить питание кровью теплокровных животных только самки комара обыкновенного. Особенно четко этологический фактор прослеживается у видов с развитой психикой во время установления половых контактов, брачных церемоний и при воспитании потомства.

Групповой эффект выражается в объединении двух и более особей с целью приспособления к окружающей среде. Он наиболее характерен для прямокрылых и особенно саранчовых. Саранча перелетная (Locusta migratoria) иногда собирается в огромные стаи, налеты которых опустошают растительный покров на значительных территориях. Большими семьями живут муравьи и термиты. Могут объединяться во временные группы — стаи для координации своих действий при перемене места обитания и в поисках пищи рыбы и птицы. Миграция млекопитающих также связана с формированием стай. Нередко млекопитающие (обезьяны, киты, северные олени и др.) образуют стадо, имеющее своего вожака. Подобная организация позволяет группе, иногда насчитывающей десятки тысяч особей, более активно приспосабливаться к окружающей среде, успешнее вести конкурентную борьбу за пищу и место с соседствующими видами.

Внутривидовая конкуренция представляет собой взаимоотношения между организмами или группами организмов внутри вида, в процессе которых они вступают в борьбу за одни и те же источники существования и условия размножения (пища, вода, местообитание и др.). Кроме экологического конкуренция имеет важное биологическое значение, так как в процессе ее менее приспособленные к жизни в конкретных условиях особи вида уничтожаются или устраняются от размножения. Как правило, чем насыщеннее среда данным видом, тем жестче конкурентные отношения между особями.

В качестве примера конкурентных отношений внутри растительного вида за световую энергию и почвенное питание можно привести постепенное изреживание древостоя по мере увеличения возраста соснового леса. Нетрудно заметить, что в одновозрастных сосняках деревья заметно различаются по толщине ствола, развитости кроны и жизненному состоянию. Внутривидовая конкуренция в мире животных отражена в пословице «Два медведя в одной берлоге не живут».

Межвидовые факторы. Группа этих факторов включает взаимоотношения между видами, которые сводятся к следующим типам: нейтрализм, симбиоз (мутуализм, комменсализм, паразитизм), аменсализм, хищничество, антибиоз и конкуренция.

Нейтрализм имеет место, когда совместно обитающие организмы разных видов не оказывают друг на друга никакого (ни положительного, ни отрицательного) влияния. В природе очень трудно обнаружить взаимоотношения данного типа. Вероятнее всего, в нейтральных отношениях находятся виды, не связанные единой пищевой цепью, но при условии, что изменение среды обитания одним видом не вызывает ответной реакции соседствующего вида.

Симбиоз_(от греч. symbiosis — сожительство) характеризует различные формы совместного существования организмов разных видов (симбионтов), в результате чего эти организмы регулируют свои отношения с внешней средой. Выделяют следующие типы симбиоза: мутуализм, комменсализм и паразитизм.

Мутуализм (от лат. mutuus — взаимный) охватывает все разнообразие взаимополезных сожительств и отношений организмов разных видов. Мутуалистическими являются отношения азотфиксирующих бактерий с фотосинтезирующими растениями, мицелия гриба (грибницы) с корнями высших растений (гифы гриба оплетают корни и способствуют поступлению воды и минеральных веществ из почвы, а сам корень служит для них средой обитания). Широко распространен мутуализм в мире животных. Так, рак отшельник с ростом меняет меньшую раковину на большую, пряча в ней свое мягкое брюшко. При этом он клешней осторожно снимает актинию со-старой раковины и пересаживает ее на новую. Актиния, перемещаясь на раковине, занятой раком-отшельником, лучше обеспечивает себя питанием и одновременно стрекательными железами защищает себя и рака от врагов. Характерны мутуалистические отношения для насекомых-опылителей и цветковых растений: перекрестноопыляемые растения создают следующее потомство с лучшими наследственными признаками, чем те, которые самоопыляются.

Комменсализм (от лат. тепба — стол, трапеза) — не что иное, как сотрапезничество и нахлебничество, при котором один из видов (комменсал) постоянно или временно живет за счет другого, не причиняя ему вреда. При комменсализме один из сожительствующих видов использует другой в качестве среды обитания, средства передвижения или питается за его счет.

Среди растений к комменсалам относятся лишайники, цветковые растения, селящиеся на стволах древесных растений, и лианы. Например, в сосновых лесах умеренного пояса стволы деревьев обильно покрыты лишайниками разной видовой принадлежности. Не имея возможности питаться за счет почвы, лишайники используют минеральные вещества, в незначительных количествах накапливающиеся между их телом и корой дерева. Своеобразные сообщества комменсалов образуются у видов цветковых растений, которые относятся к семейству бромелиевых (ананасных), обычному во влажных тропических лесах Америки. У его отдельных представителей листовые влагалища расширены и краями плотно охватывают друг друга, образуя «чаши» и «вазы», в которых во время дождей накапливается вода, например у фризии гигантской до 5 л. У других видов (тилландсия, брокиния)  путем увеличения влагалища листа, в которых также накапливается вода, образовались листовые цистерны, где селятся водоросли, черви, моллюски, рачки, насекомые и даже саламандры, лягушки. В поисках пищи в них проникают также ящерицы и змеи.

Комменсал часто ограничивается использованием пищи организма другого вида, например, живущий в извивах раковины рака-отшельника кольчатый червь из рода нереис (Nereis) поедает остатки пищи хозяина раковины. Рыба-прилипала своим спинным плавником, превращенным в присоску, прикрепляется к коже акул и других крупных животных, используя их для передвижения в поисках пищи.

Разновидностью комменсализма является поселение животных в дуплах растений или под их корой, а также водорослей в шерстяном покрове млекопитающих. В шерсти южноамериканского ленивца зеленая водоросль развивается в таком количестве, что придает животному зеленую окраску и делает его малозаметным на фоне листвы.

Паразитизм - представляет собой форму взаимоотношений между организмами разных видов, при которой один организм (паразит) использует другой (хозяин) в качестве среды обитания и источника пищи, возлагая при этом частично или полностью на хозяина регуляцию своих отношений с внешней средой. По сравнению с другими типами межвидовых отношений паразитизм — преимущественно экологическое понятие, поскольку оно определяет среду обитания, хотя и своеобразную, одного из видов.

Среди паразитов есть эктопаразиты, большая часть тела которых находится вне хозяина, органы питания внедряются в его живые клетки, и эндопаразиты, все или почти все тело которых находится внутри хозяина. В последнем случае паразит лучше обеспечен питанием и лучше защищен от внешней среды, однако погибает вместе с хозяином. Имеются паразиты облигатные (обязательные) и факультативные (необязательные). Первые ведут только паразитический образ жизни, вторые, являясь паразитами, могут питаться и мертвыми остатками организмов.  Паразиты бывают также временными и постоянными.  Временные лишь периодически используют хозяина (оводы, мошка, комары), постоянные — проводят на теле хозяина или внутри его всю жизнь. Переходы между временными и постоянными паразитами постепенны. Паразиты могут иметь одного хозяина (специфические) или нескольких (неспецифические). Последние поражают широкий круг растений или животных (мучнистая роса, ржавчинные грибы, кошачья двуустка).

Паразитизм широко распространен в мире растений и животных. Известны многочисленные виды паразитирующих грибов, бактерий, водорослей, вирусов и цветковых растений. Среди мхов, папоротников и голосеменных паразитов нет. Хозяевами растений-паразитов могут быть другие растения, животные и человек. У человека паразитирующие бактерии вызывают ряд заболеваний.

Среди растений встречаются полные паразиты и полупаразиты. Полные паразиты не имеют фотосинтезирующих органов, или эти органы настолько изменены, что уже не могут выполнять функции фотосинтеза (петров крест, повилика, заразиха). Все свое питание они получают от хозяина. Полупаразиты (очанка, погремок, омела, марьянник лесной) для фотосинтеза берут от хозяев только растворы минеральных солей. Получая преимущество в борьбе за жизненное пространство, полупаразиты вытесняют других представителей травостоя из луговых сообществ, приводя их к видовому обеднению и снижению продуктивности.

Особой  формой  паразитизма  отличаются  деревья-душители  тропических лесов.  Их  семена,  занесенные птицами на ветви дерева-хозяина, прорастают. Молодое растение-душитель ведет себя вначале как эпифит. Затем одни свисающие корни по мере роста достигают поверхности почвы и образуют подпорки, другие же постепенно оплетают ствол хозяина, часто почти весь, и, утолщаясь, так плотно его сдавливают, что дерево-хозяин гибнет. Душитель же укрепляется в почве с помощью собственных корней. К таким растениям относятся фикусы-уду-шители, которые ценой жизни деревьев-хозяев обеспечивают себе процветание. По этой причине в странах Карибского моря фикус считается символом неблагодарности и предательства. К данной группе паразитов можно отнести и древогубцев из семейства бересклетовых. Их плетеобразные стволы, не имеющие листьев и цветков, плотно обнимают ствол или толстые ветви дерева-опоры. Такое «объятие» по мере утолщения плетеобразного ствола становится столь сильным, что прекращается рост опоры и она погибает.

Аменсализм - представляет собой форму взаимоотношений между организмами, полезную для одного вида, но вредную для другого. Обитающие в норах сусликов и кротов клещи и блохи могут послужить причиной инфекционных заболеваний грызунов и их массовой гибели. Вороны, являясь «нахлебниками» волка, подбирающими остатки его пищи, криком могут затруднить охоту своего «кормильца» или привлечь охотника. В большинстве случаев из всего многообразия межвидовых биотических отношений аменсализм выделить трудно.

Хищничество - форма взаимоотношений между организмами разных видов, из которых один организм (хищник) поедает другой (жертва, добыча), обычно предварительно убив его. Хищничество — весьма распространенный тип межвидовых отношений. Все консументы, по существу, являются хищниками, так как употребляют зеленую растительную массу (травоядные) или животную пищу (консументы второго и третьего порядка). В межвидовых биотических отношениях потребление зеленой (живой) растительной массы принципиально не отличается от потребления гетеротрофами - хищниками убитых животных (Воронов, 1987).

Хищничество более всего развито в мире животных, однако и среди цветковых растений имеются виды, добывающие себе дополнительное азотное или микроэлементное питание способами, аналогичными охоте животных-хищников. «Ловля» растениями насекомых в воздушной среде и мелких рачков или мальков в водоемах обеспечивается определенными морфологическими приспособлениями, в первом случае — клейкими листьями и липкой блестящей приманкой (росянка), во втором — ловчими камерами (пузырчатка).

Антибиоз связан с тем, что организм выделяет какие-либо токсические вещества, действующие на другие организмы, но не оказывающие вредного действия на данный организм. У многих растений существуют собственные «гербициды», или фитотоксины, которыми они подавляют своих конкурентов. Отрицательное влияние растений друг на друга при помощи веществ, выделяемых в окружающую среду, называется аллелопатией. Об аллелопатии свидетельствует, например, отсутствие в умеренной зоне вблизи чабреца подорожника. Фитотоксины, накапливающиеся на листьях чамиза (Adenostoma fasciculatum), доминирующего в колючем кустарнике Калифорнии чапарале, при слабом дожде смываются на почву, подавляя не только рост травянистых растений, но и прорастание семян. Всем хорошо известны также антибиотики, вырабатываемые грибами и используемые в лечебных целях.

Продукты, выделяемые растениями, могут вредно сказываться на отдельных видах животных. Синезеленые водоросли рода микроцистис, массово размножаясь, не только вызывают «цветение» воды, но и насыщают ее своими токсичными выделениями, вызывая массовую гибель рыбы и даже отравление людей.

Межвидовая конкуренция имеет место в том случае, когда особи разных видов претендуют на одни и те же пищевые ресурсы или одно и то же местообитание, но существовать совместно не могут. Она является наиболее распространенным типом межвидовых биотических отношений. Как правило, межвидовая конкурентная борьба менее острая, чем внутривидовая, поскольку особи одного вида более близки друг к другу по своей экологии, чем особи разных видов.

На внутривидовых и межвидовых биотических отношениях рассмотренных типов в значительной степени основано функционирование биоценозов.

7. По мнению Мончадского, рациональная классификация экологических факторов должна прежде всего учитывать особенности реакций живых организмов, подвергшихся воздействию этих факторов, в том числе степень совершенства адаптации организмов, которая тем выше, чем древнее данная адаптация. Эта классификация подразделяет все экологические факторы на три группы: первичные периодические, вторичные периодические и непериодические факторы. Рассмотрим их подробнее. Адаптация в первую очередь возникает к тем факторам среды, которым свойственна периодичность — дневная, лунная, сезонная или годовая как прямое следствие вращения земного шара вокруг своей оси и его движения вокруг Солнца или смены лунных фаз. Регулярные циклы этих факторов существовали задолго до появления жизни на Земле, и это обстоятельство объясняет, почему адаптации организмов к первичным периодическим факторам столь древние и так прочно укрепились в их наследственной основе. Температура, освещенность, приливы и отливы относятся к первичным периодическим факторам. Согласно А. С. Мончадскому, изменения первичных периодических факторов сказываются на регуляции численности особей исключительно через влияние на размеры ареалов видов. В пределах же ареалов их действие, если оно и имеется, не является определяющим. В целом адаптивные реакции организмов на влияние первичных периодических факторов сходны у всех групп животных и не обнаруживают специфики. Так, математические законы, относящиеся к действию температуры на проявления жизнедеятельности, практически одинаковы у таких столь отдаленных групп, как насекомые и позвоночные. У птиц и насекомых выявлены одни и те же основные типы ФПР. Первичные периодические факторы играют преобладающую роль во многих местообитаниях. Исключение составляют некоторые специфические зоны обитания, такие, как абиссаль или подземные участки, где изменения первичных факторов равны нулю или очень незначительны. Первичные периодические факторы всегда следует иметь в виду, особенно при экспериментальных экологических исследованиях. Результаты, полученные в опытах с животными, которые помещены в условия с постоянной температурой или освещенностью, могут значительно отличаться от результатов для животных, находящихся в природе, где произошло изменение этих факторов. Существованием резко выраженной адаптации организмов к первичным периодическим факторам можно объяснить неблагоприятность постоянной температуры. В частности, В. Е. Шелфорд показал, что для роста и развития сопротивляемости животных совершенно необходимо колебание температуры. Изменения вторичных периодических факторов есть следствие изменений первичных периодических факторов. Чем теснее связь вторичного периодического фактора с первичным, тем с большей регулярностью проявляется периодичность первого. Так, влажность воздуха — это вторичный фактор, который находится в прямой зависимости от температуры. В тропиках или областях с муссонным климатом выпадение осадков подчиняется суточной или сезонной периодичности. Примером вторичного периодического фактора может быть также растительность, служащая пищей, периодичность произрастания которой связана с вегетационным циклом. Сезонные изменения, касающиеся жертв и хозяев, их биологические и физиологические особенности важны для хищников и паразитов; к ним они приспосабливаются. В водной среде содержание кислорода, количество растворенных солей, мутность, наличие горизонтальной и вертикальной циркуляции вод, колебание уровня воды, скорость течения чаще всего являются вторичными периодическими факторами. Однако периодичность этих факторов не строгая ввиду того, что они зависят от первичных периодических факторов довольно слабо. Наконец, биотические внутривидовые влияния также относятся к вторичным периодическим факторам, ибо все взаимодействия между особями осуществляются на фоне годичных циклов.

По сравнению с первичными вторичные периодические факторы не столь древнего происхождения. Организмы приспособились к ним не так давно, и их адаптации не столь четко выражены и одновременно более разнообразны в различных систематических группах. Так, относительная влажность воздуха стала для организмов экологическим фактором, когда они перешли к наземному образу жизни. Поэтому адаптации к изменению относительной влажности развиты у животных менее сильно, чем, например, адаптации к колебанию температуры — первичного периодического фактора; диапазон выносливости к изменению относительной влажности часто не столь широк, как к изменению температуры, в то же время адаптивные реакции к нему разнообразнее. Адаптации к пище также весьма разнообразны. Как правило, вторичные периодические факторы сказываются на численности видов в пределах их ареалов, но мало влияют на протяженность и конфигурацию последних. Непериодические факторы в местах обитания организма в нормальных условиях не существуют. Они проявляются внезапно, поэтому организмы обычно не успевают к ним приспособиться. В эту группу входят некоторые климатические факторы, например шквальные ветры, грозы, а также пожары. Сюда же следует отнести все формы человеческой деятельности и действия хищных, паразитических и патогенных видов животных, т.е., согласно общепринятой терминологии, биотические факторы, за исключением взаимодействия между особями одного вида. Влияние хозяина на паразита следует отнести к вторичным периодическим факторам, так как среда, обретаемая паразитом в лице хозяина, представляет собой нормальное его местообитание. Зато для хозяина паразит (или патогенный агент) не является необходимостью: это непериодический фактор, который не вызывает, как правило, никакой адаптации, кроме некоторых сравнительно редких случаев (например, приобретенный иммунитет), когда число паразитов или патогенных организмов велико настолько, что они представляют постоянный элемент данного биоценоза. В ряде случаев отнесение некоторых факторов к категории непериодических не столь очевидно. Это относится, в частности, к сильным ветрам и пожарам. В некоторых районах, например на океанических островах, сильные ветры, дующие в одном и том же направлении в течение большей части года, настолько обычное явление, что к нему приспосабливаются и животные, и растения. Кроны деревьев приобретают характерную флагообразную форму, а приземистые кустарники подушкообразной формы, гася порывы ветра у самой земли, создают особый микроклимат, в котором комфортно чувствуют себя многочисленные и разнообразные беспозвоночные и позвоночные животные. Очевидно, что только шквальный ветер, внезапно обрушивающийся на спокойную в остальное время территорию, может «претендовать» на роль непериодического фактора. Еще сложнее обстоит дело с пожарами. На севере Европы хвойные леса регулярно, один раз в 60—100 лет, выгорают вследствие пожаров, вызванных частыми грозами. И в то же время трудно утверждать, что деревья хвойных пород обладают адаптациями по отношению к такому фактору, как пожары. Напротив, они как раз отличаются особой уязвимостью к огню, но именно поэтому, как станет ясно из материалов гл. 13, пожары следует отнести в категорию периодических факторов. Отсутствие в большинстве случаев адаптивных реакций на непериодические факторы дает теоретическое обоснование при разработке методов борьбы с вредными животными с помощью химических и биологических средств. Только многократная обработка инсектицидами многих поколений насекомых приводит к возникновению устойчивых рас, поскольку при многолетнем использовании инсектициды приобретают значение вторичного периодического фактора. Более века назад швейцарский ученый Мюллер получил за изобретение ДДТ Нобелевскую премию. В то время препарат обладал высокой токсичностью по отношению к вредным насекомым. Однако многократное применение ДДТ привело к появлению устойчивых рас. Положительный эффект ДДТ стал снижаться, а вредное действие, напротив, стало проявляться все заметнее. И сейчас использование ДДТ запрещено законом в большинстве стран. В ряде случаев устойчивость к воздействию ДДТ возникала чрезвычайно быстро. Так, у известного кровососа постельного клопа (Cimex lectularius) уже после нескольких обработок ядохимикатом появлялись устойчивые расы, полностью нечувствительные к нему. Исследование влияния ДДТ на постельного клопа позволило выявить интересный механизм адаптации, благодаря которому непериодический фактор «перешел» в разряд вторичного периодического. Для нормального функционирования дыхательной цепи в митохондриях необходимо присутствие нескольких цитохромов. Начальным акцептором электронов от K^Q является цитохром Ь. От него электроны принимаются цитохромом 551 и передаются на цитохром с. Комплекс двух цитохромов (а + аъ) принимает электроны от цитохрома с и реагирует с молекулярным кислородом:

Было установлено, что ДДТ блокирует передачу электронов с цитохромов (а + я3) на молекулярный кислород, вызывая гибель насекомого. Однако уже через несколько поколений функцию переноса электронов от K0Q на молекулярный кислород берет на себя цитохром Ь5. Такая прямая транспортировка электронов осуществляется не в митохондриях, а в других внутриклеточных тельцах — микросомах, в которых только и присутствует цитохром b5. Обычно перенос электронов через цитохром Ь5 имеет второстепенное значение в энергетическом обмене насекомых, но его роль значительно возрастает во время диапаузы яиц и куколок, а также под воздействием такого яда, как ДДТ. Действие непериодических факторов сказывается преимущественно на численности особей в пределах конкретной территории. Оно не изменяет, как правило, ни протяженности ареал

8 Для разных видов растений и животных условия, в которых они особенно хорошо себя чувствуют, неодинаковы. Например, некоторые растения предпочитают очень влажную почву, другие — относительно сухую. Одни требуют сильной жары, другие лучше переносят более холодную среду и т. д. Интенсивность экологического фактора, наиболее благоприятная для жизнедеятельности организма, называется оптимумом, а дающая наихудший эффект — пессимумом, т. е. условия, при которых жизнедеятельность организма максимально угнетается, но он еще может существовать. Так, при выращивании растений при различных температурах точка, при которой наблюдается максимальный рост, и будет оптимумом. В большинстве случаев это некий диапазон температур, составляющий несколько градусов, поэтому лучше здесь говорить о зоне оптимума. Весь интервал температур, от минимальной до максимальной, при которых еще возможен рост, называют диапазоном устойчивости (выносливости) или толерантности. Точки, ограничивающие его, т. е. максимальная и минимальная, пригодные для жизни температуры, — это пределы устойчивости. Между зоной оптимума и пределами устойчивости по мере приближения к последним растение испытывает все нарастающий стресс, т. е. речь идет о стрессовых зонах или зонах угнетения в рамках диапазона устойчивости (рис. 3.1). По мере удаления от оптимума вниз и вверх по шкале не только усиливается стресс, а в конечном итоге по достижении пределов устойчивости организма происходит его гибель.

Подобные эксперименты можно провести и для проверки влияния других факторов. Результаты графически будут соответствовать кривой подобного же типа. Повторяемость наблюдаемых тенденций дает возможность сделать заключение, что здесь речь идет о фундаментальном биологическом принципе. Для каждого вида растений (животных) существуют оптимум, стрессовые зоны и пределы устойчивости или выносливости в отношении каждого средового фактора. При значении фактора, близком к пределам выносливости или толерантности, организм обычно может существовать лишь непродолжительное время. В более узком интервале условий возможно длительное существование и рост особей. Еще в более узком диапазоне происходит размножение, и вид может существовать неограниченно долго. Обычно где-то в средней части диапазона устойчивости имеются условия, наиболее благоприятные для жизнедеятельности, роста и размножения. Эти условия называют оптимальными, в которых особи данного вида оказываются наиболее приспособленными, т. е. оставляют наибольшее число потомков. На практике выявить такие условия сложно, и обычно определяют оптимум для отдельных показателей жизнедеятельности — скорости роста, выживаемости и т. п. Свойство видов адаптироваться к тому или иному диапазону факторов среды обозначается понятием «экологическая пластичность» (экологическая валентность) вида. Чем шире диапазон колебаний экологического фактора, в пределах которого данный вид может существовать, тем больше его экологическая пластичность. Виды, способные существовать при небольших отклонениях от фактора, от оптимальной величины, называются узкоспециализированными, а выдерживающие значительные изменения фактора — широкоприспособленными. К узкоспециализированным видам относятся, например, организмы пресных вод, нормальная жизнь которых сохраняется при низком содержании солей в среде. Для большинства обитателей морей, наоборот, нормальная жизнедеятельность сохраняется при высокой концентрации солей в окружающей среде. Отсюда пресноводные и морские виды обладают невысокой экологической пластичностью по отношению к солености. В то же время, например, трехиглой колюшке свойственна высокая экологическая пластичность, так как она может жить как в пресных, так и в соленых водах. Экологически выносливые виды называют эврибионтными (eyros — широкий): маловыносливые — стенобионтными (stenos — узкий). Эврибионтность и стенобионтность характеризуют различные типы приспособления организмов к выживанию. Виды, длительное время развивающиеся в относительно стабильных условиях, утрачивают экологическую пластичность и вырабатывают черты стенобионтности, тогда как виды, существовавшие при значительных колебаниях факторов среды, приобретают повышенную экологическую пластичность и становятся эврибионтными (рис. 3.2).

Экологическая пластичность видов (по Ю. Одуму, 1975) Отношение организмов к колебаниям того или иного определенного фактора выражается прибавлением приставки «эври-» или «стено-» к названию фактора. Например, по отношению к температуре различают эври- и стенотермные организмы, к концентрации солей — эвристеногалинные, к свету — эври- и стенофотные и др. По отношению ко всем факторам среды эврибионтные организмы встречаются редко. Чаще всего эври- или стенобионтность проявляется по отношению к одному фактору. Так, пресноводные и морские рыбы будут стеногалинными, тогда как ранее названная трехиглая колюшка — типичный эвригалинный представитель. Растение, являясь эвритермным, одновременно может относиться к стеногигробионтам, т. е. быть менее стойким относительно колебаний влажности. Эврибионтность, как правило, способствует широкому распространению видов. Многие простейшие, грибы (типичные эврибионты) являются космополитами и распространены повсеместно. Стенобионтность обычно ограничивает ареалы. В то же время, нередко благодаря высокой специализированности, сте-нобионтам принадлежат обширные территории. Например, рыбоядная птица скопа (Pandion haliaetus) — типичный стенофаг, а по отношению же к другим факторам является эврибионтом, обладает способностью в поисках пищи передвигаться на большие расстояния и занимает значительный ареал. Все факторы среды взаимосвязаны, и среди них нет абсолютно безразличных для любого организма. Популяция и вид в целом реагируют на эти факторы, воспринимая их по-разному. Такая избирательность обусловливает и избирательное отношение организмов к заселению той или иной территории.  Различные виды организмов предъявляют неодинаковые требования к почвенным условиям, температуре, влажности, свету и т. д. Поэтому на разных почвах, в разных климатических поясах произрастают различные растения. С другой стороны, в растительных ассоциациях формируются разные условия для животных. Приспосабливаясь к абиотическим факторам среды и вступая в определенные биотические связи друг с другом, растения, животные и микроорганизмы распределяются по различным средам и формируют многообразные экосистемы, объединяющиеся в биосферу Земли. Следовательно, к каждому из факторов среды особи и формирующиеся из них популяции приспосабливаются относительно независимым путем. Экологическая валентность их по отношению к разным факторам оказывается неодинаковой. Каждый вид обладает специфическим экологическим спектром, т. е. суммой экологических валентностей по отношению к факторам среды.

9. Среда с позиции экологии. Организм является начальной, основной единицей обмена веществ. Именно с организма и начинается цепочка взаимоотношений живой материи, ее нельзя прервать ни на одном уровне. Очевидно, что существует глубокая связь между организмом и окружающей средой.

Среда — комплекс природных тел и явлений, с которыми организм находится в прямых или косвенных взаимоотношениях. В широком смысле это материальные тела, явления и энергия, воздействующие на организм.

Существует значительное разнообразие объема значений слова «среда» в зависимости от степени конкретизации понятия. Так, внешняя среда рассматривается как совокупность сил и явлений природы, ее вещество и пространство, любая деятельность человека (организма), находящаяся вне рассматриваемого объекта или субъекта и необязательно непосредственно контактирующая с ним. Понятие окружающая среда — то же, что и среда внешняя, но она находится в непосредственном контакте с объектом или субъектом. Термин, очевидно, требует определяющего дополнения: среда, окружающая кого? что? Поэтому более правильно говорить «окружающая человека среда», и т.д. Различают также природную среду (сочетание естественных и измененных деятельностью человека факторов живой и неживой природы, которые проявляют эффект воздействия на организм), среду абиотическую (все силы и явления природы, происхождение которых прямо не связано с жизнедеятельностью ныне живущих организмов) и среду биотическую (силы и явления природы, которые обязаны своим происхождением жизнедеятельности ныне живущих организмов).

Имеет место и конкретное пространственное понимание среды, как непосредственного окружения организма — среда обитания. К ней относят только те элементы среды, с которыми данный организм вступает в прямые или непрямые отношения, т.е. это все то, среди чего он живет.

В земных условиях живые организмы освоили четыре основные среды обитания, сильно различающиеся по специфике условий. Первой по времени была водная среда, в которой возникла и распространилась жизнь. В дальнейшем живые организмы овладели наземно- воздушной средой, затем они создали и заселили почву. Четвертой специфической средой жизни стали сами организмы, тела которых использовались паразитами или симбионтами.

Необходимо подчеркнуть, что понятие «среда» не является синонимом понятия «условия существования». Последнее означает сумму жизненно необходимых факторов среды, без которых живые организмы не могут существовать.

10. Влияние среды на организм. Организм, испытывая потребность в притоке вещества, энергии и информации, полностью зависит от среды. Уместно здесь привести закон, открытый российским ученым К.Ф. Рулье: результаты развития (изменений) любого объекта (организма) определяются соотношением его внутренних особенностей и особенностей той среды, в которой он находится. Этот закон, иногда называемый первым экологическим законом жизни, имеет общее значение, так как в равной мере относится к живой и неживой материи, а также к социальной сфере.

Эволюционно возникшее приспособление организмов к условиям среды, выражающееся в изменении их внешних и внутренних особенностей, носит название адаптации.

Способность к адаптациям — одно из основных свойств жизни вообще, поскольку обеспечивает саму возможность ее существования, возможность организмов выживать и размножаться. При этом адаптации способны проявляться на самых разных уровнях: от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и экосистем.

Каждый организм реагирует на окружающую среду в соответствии со своей генетической конституцией. Правило соответствия условий среды генетической предопределенности организма гласит: до тех пор, пока среда, окружающая определенный вид организмов, соответствует генетическим возможностям приспособления этого вида к ее колебаниям и изменениям, этот вид может существовать. Согласно этому правилу тот или иной вид живого возник в определенной среде и в той или иной степени смог приспособиться к ней. Дальнейшее его существование возможно лишь в ней или в близкой к ней среде. Резкое и быстрое изменение условий среды обитания может привести к тому, что генетический аппарат вида не сможет приспособиться к новым условиям жизни. Сказанное в полной мере относится и к человеку.

Влияние живых организмов на среду. Организмы и сами способны существенно воздействовать на среду. Так, их жизнедеятельность сильно влияет на газовый состав атмосферы. Это связано, в частности, с тем, что в результате фотосинтеза зеленых растений в атмосферу поступает кислород. Диоксид углерода, напротив, извлекается из атмосферного воздуха растениями и вновь поступает туда в процессе разложения остатков погибших организмов. В процессе разложения тел погибших организмов бактерии, грибы и животные участвуют в образовании почвы. Именно жизнедеятельность организмов определяет содержание растворенных органических соединений и минеральных солей в природных водах. Укажем, что организмы, меняя химический состав среды, воздействуют и на ее физические свойства.

На предел воздействия организмов на среду обитания описывает другой экологический закон жизни (Ю.Н. Куражковский): каждый вид организмов, потребляя из окружающей среды необходимые ему вещества и выделяя в нее продукты своей жизнедеятельности, изменяет ее таким образом, что среда обитания становится непригодной для его существования.Таким образом, организмы испытывают воздействие постоянно меняющихся условий среды, но и сами способны изменять эти условия.

11.

12

13. Дефицит пресной воды – явление, знакомое человечеству с древней­ших времен. Не раз он становился причиной кризисов и социальных катастроф. В традиционном обществе дефицит воды случался в локальных масштабах, и обусловленные им кризисы тоже оставались локальными. Но по мере развития человечества увеличивались масштабы и вододефицита, и кризисов. Именно водный кризис, обусловленный последствиями грандиозных работ по гидромелиорации (а именно – вторичным засолением почвы), стал причиной гибели цивилизации Древнего Двуречья. Аналогичные проявления неумелого водопользования привели к экономическому ослаблению Карфагена, последовавшему затем его поражению в войнах с Римом и фактическому исчезновению с карты Древнего Средиземноморья. В наши дни водный кризис приобретает глобальные масштабы.

По данным ООН[1], уже сейчас более 1,2 млрд людей живут в условиях постоянного дефицита пресной воды, около 2 млрд страдают от него регулярно (в сухой сезон и т. п.). По прогнозам ФАО, к середине третьего десятилетия XXI в. численность живущих при перманентной нехватке воды превысит 4 млрд человек. Подобные прогнозы представляются весьма правдоподобными. Еще в 1997 г. Дж. Родда[2] экстраполировал, во-первых, растущую кривую глобального водопотребления (при трех возможных сценариях) и падающую кривую экономически доступных водных ресурсов. Отметим, что при экстраполяции учитывались, естественно, только сложившиеся тенденции, уже действующие факторы негативного антропогенного воздействия на водные источники (загрязнение, истощение вследствие недопустимо высокого водозабора, осушение верховых болот с неизбежным иссяканием питаемых ими малых рек, сведение лесов на водосборе и т. д.), ожидаемые, но еще практически не проявившиеся факторы (например потепление климата) в прогнозах такого рода не могут быть учтены. Получилось, что кривые водопотребления и доступных ресурсов пересекаются в 2035–2045 гг. (в зависимости от сценария). Однако за прошедшие 10 лет выяснилось, что потребление растет «круче», чем в самом неблагоприятном сценарии, а объем доступных ресурсов сокращается быстрее, чем в период, взятый за базу при экстраполяции, – при соответствующих корректировках пересечение приходится уже примерно на 2025–2030 гг.

Конечно, в реальности подобное пересечение вообще неосуществимо, кривая водо­по­треб­ления не может подняться выше уровня предельно доступных запасов. Продолжение роста водопотребления с темпами, характерными для второй половины ХХ в., уже невозможно. Смысл экстраполяционного прогноза – предупреждающее знание, оно служит стимулом для постановки проблемы: как кривые, демонстрируемые экстраполяционным прогнозом, в ходе реализации процесса трансформируются силами, не принимаемыми во внимание при экстраполяции, что это за силы, как они будут действовать? Приближение глобального водного кризиса остановит рост водопотребления, это произойдет с той же непреложностью, с какой выполняются законы природы, но к каким экономическим, социальным и поли­тическим последствиям приве­дет эта остановка?

В последние десятилетия все чаще дефицит пресной воды возникает в регионах, где его раньше не было, и повсеместно усиливается. Очевидная причина этого – расширение водопотребления увеличивающимся населением и растущей экономикой. Однако если бы дело ограничивалось только этой причиной, то ухудшались бы лишь относительные показатели водообеспеченности (не обязательно реального потребления): объем водных ресурсов в расчете на душу населения и на единицу производимого продукта. Однако пресной воды удовлетворительного качества становится меньше не только в относительном, но и в абсолютном измерении. Это обстоятельство часто недооценивается, подчас и вовсе остается незамеченным. Тем не менее, именно оно позволяет понять сущность процесса нарастания вододефицита и определить основные принципы стратегии, которая позволит развивающемуся человечеству решить проблему. Для его анализа необходимо начать с естественнонаучного аспекта, чтобы затем перейти к экономическому и политическому аспектам. 2. Водные ресурсы и их воспроизводимость

Пресную воду (во всяком случае, из поверхностных источников) привыкли считать воспроизводимым, возобновляемым ресурсом. Предполагается, что эксплуатация водных объектов не наносит им существенного ущерба, во всяком случае, ущерб не достигает критического уровня, за которым начинается деградация водного объекта – источника пресной воды, а ее воспроизводимость (даже необязательно в полном объеме) становится проблематичной. Часто водные ресурсы противопоставляют минеральным (прежде всего нефти), утверждая, что запасы нефти неизбежно иссякнут (с этим спорить не приходится), а запасы пресной воды – никогда. Для нау­ки наивность подобных представлений очевидна уже много лет, но адекватное понимание проблемы все еще пробивает дорогу к общественному сознанию, хотя теперь каждому известны примеры гибели малых рек, зарастания озер, очень высокого загрязнения водных объектов всех видов и разновидностей. 3. Экстенсивное водопотребление и пределы его роста

Понимание природных механизмов воспроизводства водных ресурсов необходимо для правильного выбора стратегии преодоления вододефицита. Человеку свойственно при возникновении какой-либо нехватки прежде всего искать дополнительные количества недостающего. Расширение ресурсной базы при сохранении используемых технологий в части как производственного оборудования, так и организации труда и структуры потребления – это экстенсивный путь развития, который в опре­деленный момент неизбежно приводит к пределу роста[4]. Такое столкновение крайне болезненно для развивающейся системы, поскольку означает неизбежность выхода из сложившегося режима воспроизводства, причем с ухудшением практически всех экономических характеристик. Однако возможен и другой путь – развитие преимущественно за счет интенсивных факторов, когда общее потребление дефицитного ресурса не растет, зато увеличивается эффективность его использования, сокращаются его затраты на единицу по­лучаемого экономического результата (например на единицу выпускаемой продукции).

14. Почва является результатом деятельности живых организмов. Заселявшие наземно-воздушную среду организмы приводили к возникнвению почвы как уникальной среды обитания. Почва представляет собой сложную систему, включающую твердую фазу (минеральные частицы), жидкую фазу (почвенная влага) и газообразную фазу. Соотношение этих трех фаз и определяет особенности почвы как среды жизни.

Важной особенностью почвы является также наличие определенного количества органического вещества. Оно образуется в результате отмирания организмов и входит в состав их экскретов (выделений).

Условия почвенной среды обитания определяют такие свойства почвы как ее аэрация (то есть насыщенность воздухом), влажность (присутствие влаги), теплоемкость и термический режим (суточный, сезоный, разногодичный ход температур). Термический режим, по сравнению с наземно-воздушной средой, более консервативный, особенно на большой глубине. В целом, почва отличается довольно устойчивыми условиями жизни.

Вертикальные различия характерны и для других свойств почвы, например, проникновение света, естетсвенно, зависит от глубины.

Многие авторы отмечают промежуточность положения почвенной среды жизни между водной и наземно-воздушной средами. В почве возможно обитание организмов, обладающих как водным, так и воздушным типом дыхания. Вертикальный градиент проникновения света в почве еще более выражен, чем в воде. Микроорганизмы встречаются по всей толще почвы, а растения (в первую очередь, корневые системы) связаны с наружными горизонтами.

Для почвенных организмов характерны специфические органы и типы движения (роющие конечности у млекопитающих; способность к изменению толщины тела; наличие специализированных головных капсул у некоторых видов); формы тела (округлая, вольковатая, червеобразная); прочные и гибкие покровы; редукция глаз и исчезновение пигментов. Среди почвенных обитателей широко развита сапрофагия - поедание трупов других животных, гниющих остатков и т.д.

Организм как среда обитания

Организм может также служить средой обитания - для паразитов и симбионтов. Например, человеческий организм является средой обитания для огромного числа различных симбионтов (прежде всего, нормальной микрофлоры кишечника), а не редко :( - и паразитов (разнообразных плоских и круглых червей, простейших).

Организм как среда обитания характеризуется определенным постоянством (гомеостазом). В то же время некоторые виды паразитов вынуждены противостоять агрессивной среде организма (например, агрессивной среде желудочно-кишечного тракта) и имунной системе орагинзма.

Организм, как правило, обеспечивает паразитов и симбионтов питательными веществами, находящимися в доступной форме и нетребующими дальнейшего пищеварения и переработки. Поэтому у большинства паразитов наблюдается упрощение строения (редукция) органов пищеварения. Стратегия их выживания направлена на оставление как можно большего числа потомков, формирование защитных механизмов и приспособлений к рапространению.

Паразитизм и симбиотические взаимоотношения будут нами подробно рассмотрены на одном из уроков, посвященном видам взаимоотношений между организмами.

15. Основоположником учения о биосфере является великий отечественный ученый В. И. Вернадский.

Наша планета имеет неоднородное строение и состоит из концентрированных оболочек (геосфер) – внутренних и внешних. К внутренним оболочкам  относятся ядро, мантия, а к внешним –  литосфера, гидросфера, атмосфера и сложная оболочка Земли – биосфера.

Литосфера: каменная оболочка Земли – земная кора, толщиной от 6 (под океанами) до 80 км (горные системы).

Земная кора – содержит важнейшие энергетические ресурсы (уголь, нефть, сланцы, газ), рудные и нерудные полезные ископаемые.

Гидросфераводная оболочка Земли, ее подразделяют на поверхностную и подземную.

В состав поверхностной гидросферы входят воды океанов, морей, озер, рек, водохранилищ, болот, ледников, снежных покровов и др.

Подземная гидросфера включает воды, находящиеся в верхней части земной коры, их называют подземными водами.

Общее количество воды на Земле – 1,39 млрд. км3, основная масса этой воды – 97,5% - соленая вода. Масса пресной воды – 35 млн. км3, это всего 2,5% от общей массы. Около 75% пресной воды находится в твердом состоянии во льдах Антарктиды, Гренландии, горных ледниках, айсбергах, в зоне вечной мерзлоты. Таким образом, пресной воды, которую можно использовать для нужд человека не так уж много.

Атмосфера представляет собой газовую оболочку Земли, связанную с ней силой тяжести и принимающей участие в суточном и годовом вращении.

Состав атмосферы поддерживается жизнедеятельностью живых организмов и различных геохимических явлений глобального масштаба.

Атмосфера предотвращает резкие колебания температуры поверхности планеты, уменьшает поступление к ней избыточных доз ультрафиолетового излучения, является носителем газов, обеспечивающих жизненные процессы растений и животных.

Атмосфера имеет слоистое строение и состоит из тропосферы, стратосферы, мезосферы, термосферы и экзосферы. Во всех сферах атмосферы изменяется количество воздуха и температура.

Наиболее плотный слой воздуха, прилегающий к земной поверхности, называется тропосферой. Толщина ее над полюсами 7 – 10 км, над экватором – 16 – 18 км. В тропосфере сосредоточено около 80 % массы воздуха, а также основное количество атмосферных примесей. Она практически содержит весь водяной пар, при конденсации которого образуется облачность.

Температура воздуха с высотой уменьшается  и достигает -40…-50о С. Из-за неравномерного нагрева земной поверхности в тропосфере образуются мощные потоки воздуха, отмечается неустойчивость температуры, относительной влажности, давления и других факторов.

Выше тропосферы находится стратосфера, масса воздуха в ней составляет около 20 %, распространяется она до высоты ~ 55 км. В стратосфере на высоте 20 – 25 км расположен озоновый слой. Температура воздуха в ней до озонового слоя в основном постоянна (-40…-50о С), затем она повышается из-за поглощения жесткого ультрафиолетового излучения Солнца озоновым слоем и на границе с мезосферой составляет 0о…+10о С.

Выше стратосферы расположена мезосфера до высоты ~ 80 км, температура в ней значительно ниже (т. к. озона в ней почти нет) и на границе с термосферой достигает -70о…-90о С.

Дальше расположены термосфера и экзосфера, которые распространяются на сотни км, температура в них повышается до 1500о С и выше, воздух находится в ионизированном состоянии. Масса воздуха мезосферы, термосферы и экзосферы составляет около 0,5 % массы всей атмосферы.

Биосфера – внешняя оболочка Земли, в которую входит часть атмосферы до высоты 25 – 30 км (до озонового слоя), практически вся гидросфера и верхняя часть литосферы примерно до глубины 3 км, населенные живыми организмами. Состав и границы биосферы

Абиотическая часть биосферы представлена почвами и подстилающими ее породами, в которых еще есть живые организмы; атмосферным воздухом, до высот, где еще есть проявления жизни и водной средой гидросферы.

Биотическая часть состоит из живых организмов, осуществляющих обмен веществом между всеми частями биосферы.

Атмосферный воздух представляет собой смесь газов, различной природы, имеющих для живых организмов первостепенное значение.

Основной состав воздуха практически одинаков во всех местах земного шара и характеризуется следующими значениями по объему:

азот (N2) – 78,1%, кислород (O2) – 20,85%, аргон (Ar) – 0,93%, углекислый газ (CO2) – 0,03%; на долю остальных компонентов  – неон, криптон, ксенон, гелий, озон, водород и др. приходится не более чем 0,087% объема воздуха.

Кроме того, воздух имеет в своем составе примеси (микрогазы) природного и антропогенного происхождения, их также называют загрязнителями.

Происхождение газов, входящих в состав атмосферного воздуха:

Азот (N2) имеет в основном вулканическое происхождение и для большинства организмов он является нейтральным. Только лишь некоторые организмы: клубеньковые бактерии, актиномицеты, сине-зеленые водоросли способны усваивать молекулярный азот и превращать его в нитратную форму, доступную для растительных организмов, и небольшая часть его в процессе разложения детрита микроорганизмами поступает в атмосферу.

Кислород2) – образуется в процессе фотосинтеза растительных организмов, расходуется в процессах дыхания живых организмов, окисления различных отходов, сжигания топлива. В течение последних 50 лет израсходовано столько же кислорода, сколько за миллион лет тому назад. Хотя эта величина составляет сотые доли от общего количества кислорода, но такая скорость расходования его вызывает опасения. Основной причиной является сжигание большого количества топлива в энергетике, промышленности, автотранспорте, вырубка лесов, снижение фотосинтеза из-за загрязнения окружающей среды и другие факторы.

Углекислый газ (СО2). Главные источники поступления углекислого газа в атмосферу: вулканизм, почвенные процессы, дыхание живых организмов, сжигание ископаемого топлива, окислительные процессы, расходуется же он в основном в процессе фотосинтеза.

Углекислый газ накапливается в недрах Земли, в Океане. В Океане его в 60 раз больше, чем в атмосфере. Он хорошо растворяется в холодной воде и улетучивается в теплой. Океан действует как насос, на полюсах он поглощает СО2, а на экваторе выдувает его.

В настоящее время количество углекислого газа в атмосфере растет, что вызывает большое беспокойство, т. к. это основной парниковый газ. С середины 19-го века количество углекислого газа в атмосфере увеличилось ~ на 25% из-за вырубки лесов, сжигания топлива, загрязнения экосистем.

Инертные газы (аргон, ксенон, криптон, неон и другие) поступают в атмосферу в основном в процессе вулканической деятельности и на биологические процессы в основном не оказывают воздействия.

В состав атмосферы входят также аэрозоли. Аэрозоли – это мельчайшие твердые и жидкие частицы, распыленные  в воздухе, Они имеют естественное и антропогенное происхождение. Аэрозоли образуются в результате выветривания горных пород, почв, вулканизма, стихийных пожаров и т. д. Атмосферная пыль способствует конденсации паров, а следовательно образованию облаков, поглощает и отражает солнечную радиацию.

Почвы являются главным компонентом биосферы, именно они обеспечивают питание биогенными веществами растения, которые кормят весь мир консументов.

Почвы на земле разнообразны и их плодородие тоже.

Почва имеет сложный профиль в разрезе и состоит из нескольких слоев, которые формируются в результате передвижения и превращения в ней веществ. Верхний слой называют плодородным слоем почвы или гумусовым.

Главные факторы плодородия:

  • процентное содержание гумуса в гумусовом слое;

  • мощность (толщина) гумусового слоя;

  • химический состав почв – содержание химических элементов, биогенных веществ, микроэлементов;

  • механический состав, т.е. крупность частиц, способность к склеиванию частичек почвы (лучшей способностью к склеиванию обладают почвы, богатые гумусом);

  • микробиологическая активность: микроорганизмы преобразовывают химические элементы в доступную для растений форму.

На формирование различного типа почв влияют следующие почвообразующие факторы:

  • климат;

  • растительность, животные, микроорганизмы, характерные для данной климатической зоны;

  • рельеф;

  • почвообразующие породы (породы, на которых сформировались почвы).

Поскольку климатические условия не одинаковы, то и почвы отличаются большим разнообразием и зональностью. Наиболее оптимальные условия для формирования почв в зоне луговых степей, где при сравнительно ровном рельефе выпадает достаточное количество осадков (500 – 600 мм/год), обильно развивается травянистая растительность, имеющая небольшой жизненный цикл – 1-3 года. Поэтому постоянно с отмиранием наземной и корневой системы в почву возвращается значительная часть биомассы.

В лесной зоне древесная растительность имеет многолетний жизненный цикл и потребляет больше питательных веществ из почвы, чем возвращает их с опадом. Почвы этой зоны содержат меньше гумуса и имеют меньшей мощности гумусовый слой.

Выпадающие осадки определяют водный режим почв и влияют на почвообразовательный процесс:

промывной водный режим – большое количество осадков промывает почву до грунтовых вод, что приводит к интенсивному вымыванию продуктов почвообразования;

периодически промывной водный режим – характеризуется чередованием ограниченного промачивания почв в засушливые годы и промывания почвы во влажные годы;

непромывной водный режим – влага в почве находится в форме пара, распределяется только в верхних горизонтах и не достигает грунтовых вод (самый благоприятный режим для почвообразовательного процесса).

выпотной режим – проявляется в полупустынной, пустынной и степной зоне, где характерно преобладание восходящих потоков влаги в почвах и испарение теоретически значительно превышает количество осадков.

Всего в мире выделяют более 100 типов почв, только в Украине их более 40 типов.

К основным типам почв относятся следующие:

Подзолистые почвы сформировались при промывном водном режиме, распространены в таежной зоне, полесье, содержание гумуса в них не более 1-3%, мощность гумусового слоя – до 20 см.

Серые лесные почвы распространены в лесостепной зоне, сформировались в условиях периодически промывного режима, почвы богатые, гумуса в них до 4-8%, мощность гумусового слоя – 40-50 см.

Бурые лесные почвы сформировались в условиях промывного режима, распространены в зоне широколиственных лесов в Карпатах, Закарпатье, в западной Европе, содержат гумуса до 1-5%, мощность гумусового слоя – до 20 см.

Черноземы (самые богатые почвы мира) сформировались в условиях непромывного режима, распространены в зоне луговых степей. Около 60% мировых черноземов приходится на Украину и Россию, остальные – распространены в Канаде, имеются небольшие участки в Болгарии, Румынии и других странах. Черноземы резко выделяются среди остальных типов почв. Они имеют темный цвет, содержат гумуса до 8-10%, а в некоторых случаях его содержание достигает 20%, мощность гумусового слоя – 50-120 см, а иногда достигает 200-250 см.

Многие ученые задавались вопросом, что же повлияло на образование таких уникальных почв, и были сделаны выводы, что черноземы образовались под влиянием всех факторов почвообразования в комплексе. Наибольшее богатство Украины – это черноземы.

Каштановые почвы распространены в зоне сухих степей на юге Украины, Молдавии, формируются в условиях непромывного режима, содержание гумуса до 3-8%, мощность гумусового слоя достигает 50-80 см. Из-за выпадения небольшого количества осадков в этих зонах, бывают значительные недоборы урожая, требуется орошение.

Красноземы и желтоземы – почвы влажных субтропиков, сформировались в условиях промывного режима, распространены в Закавказье в Китае, Японии, гумуса – до 5-6%, мощность гумусового слоя – до 20 см.

Коричневые почвы сухих субтропиков сформировались при непромывном режиме, распространены на юге Европы, севере Африки, юге Крыма, гумуса содержат до 4%, мощность гумусового слоя – до 4%.

Красные, желтые, оранжевые почвы (имеют такой оттенок цвета из-за присутствия в них соединений железа) формируются при промывном режиме, в условиях обильных осадков (до 2000 мм/год) и высокой температуры, в зоне дождевых тропических лесов. Эти почвы бедные, маломощные, содержание гумуса в них до 1%, мощность гумусового слоя – до 7 см.. Это объясняется тем, что отмирающая биомасса при таких климатических условиях быстро разлагается микроорганизмами и вовлекается в биологический круговорот.

Сероземы – почвы  пустынь и полупустынь формируются при выпотном режиме, содержание гумуса до 1%, мощность гумусового слоя до 5-10см, требуют постоянного орошения.

Живые организмы, населяющие биосферу, составляют живое вещество планеты. Взаимодействие воздуха, воды, горных пород и живых организмов обусловило формирование почв и осадочных пород.

16 1 законы коммонера: Все связано со всем. Любое изменение, совершаемые человеком в природе, вызывает цепь последствий, как правило неблагоприятных. По сути дела, это одна из формулировок принципа единства Вселенной. Надежды на то, что какие-то наши действия, особенно в сфере современного производства, не вызовут серьезных последствий, если мы проведем ряд экозащитных мероприятий, во многом утопичны. Это способно лишь несколько успокоить ранимую психику современного обывателя, отодвигая в будущее более серьезные изменения в природе. Так мы удлиняем трубы наших ТЭЦ, считая, что при этом вредные вещества более равномерно рассеются в атмосфере и не приведут к серьезным отравлениям среди окрестного населения. И действительно, кислотные дожди, вызванные повышенной концентрацией в атмосфере соединений серы, могут пройти совсем в другом месте и даже в другой стране. Но нашим домом является вся планета. Рано или поздно мы столкнемся с ситуацией, когда длина трубы уже не будет играть существенной роли. 2 законы коммонера: Все должно куда-то деваться. Любое загрязнение природы возвращается к человеку в виде "экологического бумеранга". Предыдущий пример является ярким подтверждением этому. Планета стала слишком тесной для нас. Она уже не справляется с силой антропогенного воздействия на нее. Любое наше вмешательство в природу возвращается к нам повышенными проблемами. На фоне этого рождаются различные “смелые” проекты утилизации наших отходов, особенно радиоактивных, в космосе, на других планетах, предлагают даже отправлять их на Солнце. К счастью у этих проектов имеется огромное количество оппонентов. Потому что второй закон Коммонера никто не отменял. Мы пока еще даже не представляем, какими могут конкретные механизмы “экологического бумеранга” в случае попытки “загрязнить Солнце”. Но лучше даже не пытаться. 3 законы коммонера: Природа знает лучше. Действия человека должны быть направлены не на покорение природы и преобразование ее в своих интересах, а на адаптацию к ней. Это одна из формулировок принципа оптимальности. В совокупности с принципом единства Вселенной он приводит к тому, что Вселенная в целом предстает как единый живой организм. То же можно сказать и о системах более низких иерархических уровней, таких как планета, биосфера, экосистема, многоклеточное существо и т.п. Любые попытки внести изменения в отлаженный организм природы, чреваты нарушением прямых и обратных связей, посредством которых реализуется оптимальность внутренней структуры данного организма. Деятельность человека только тогда будет оправдана, когда мотивация наших поступков будет определяться в первую очередь той ролью, для выполнения которой мы были созданы природой, когда потребности природы будут иметь для нас большее значение, чем личные нужды, когда мы будем в состоянии во многом безропотно ограничить себя во благо процветания планеты. 4 законы коммонера: Ничего не дается даром. Если мы не хотим вкладывать средства в охрану природы, то придется платить здоровьем, как своим, так и потомков. Вопрос об охране природы очень сложен. Ни одно наше воздействие на природу не проходит бесследно, даже если выполнены, казалось бы, все требования экологической чистоты. Хотя бы потому, что развитие экозащитных технологий требует высококачественных источников энергии, и высококачественные исполняемые законы. Даже если сама энергетика перестанет загрязнять атмосферу и гидросферу вредными веществами, все равно остается нерешенным вопрос теплового загрязнения. Согласно второму закону термодинамики, любая порция энергии, претерпев ряд превращений, рано или поздно перейдет в тепло. Пока еще мы не в силах состязаться с Солнцем по количеству поставляемой на Землю энергии, но наши силы растут. Мы горим желанием открыть новые источники энергии. Как правило мы высвобождаем энергию, накопленную когда-то разными формами вещества. Это гораздо дешевле, чем улавливать рассеянную энергию Солнца, но напрямую ведет к нарушению теплового баланса планеты. Не случайно средняя температура в городах на 2-3 (а иногда и больше) градуса выше, чем за пределами города в той же местности. Рано или поздно этот “бумеранг” к нам вернется. Поэтому должен измениться сам подход к понятию экологической чистоты. Тем не менее любые вложения средств в охрану природы должны приветствоваться. Под лежачий камень вода не течет. Пусть методом проб и ошибок, но мы должны найти способы гармоничного интегрирования своего производства с биосферой планеты. И на первый план в мотивации человека должно выйти не получение наибольшей прибыли с меньшими затратами, а гармоничность производства. Где определяющую роль будет играть не рост личного дохода разработчика или производителя, а чистота их совести, степень осознания их ответственности перед природой. Пока еще это звучит довольно утопично. Но все меняется. Уже сейчас разработка мероприятий по обеспечению экологической чистоты при проектировании некоторых производств составляет основную долю расходов. Создано и развивается интересное направление в проектировании, получившее название “Разработка благодатных технологий”. Здесь основным критерием оптимальности принимаемого решения выступает не какой-то технический или экономический показатель, а совесть разработчика. Насколько все это жизнеспособно, покажет будущее. Но без подобного рода поиска нового мировоззрения человек обречен.

Законы экологии барри коммонера 

17