Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Темы_Растровая_графика_Матрицы_Побитовые операц...docx
Скачиваний:
2
Добавлен:
19.09.2019
Размер:
1.18 Mб
Скачать

5 Практические применения

С точки зрения применения отдельная битовая операция мало интересна. Поэтому практическое применение основывается на способах комбинирования различных битовых операций, для реализации более сложного вычисления. Можно отметить два аспекта:

  1. увеличение размера регистров, в которых битовые операции выполняются не по одной, а сразу на множестве 8, 16, 32, 64 битах

  2. экспериментальные устройства, где обобщают битовые операции с двоичной системы, на троичные и прочие системы счисления (так например, разработана теория работы с четверичной системы (ДНК-компьютер), так же осуществляют исследования в области квантового компьютера).

Физическая реализация битовых операций

Реализация битовых операций может в принципе быть любой: механической (в том числе гидравлической и пневматической), химической, тепловой,[10] электрической, магнитной и электромагнитной (диапазоны — ИК, видимый оптический, УФ и далее по убыванию длин волн), а также в виде комбинаций, например, электромеханической.

В первой половине XX века до изобретения транзисторов применяли электромеханические реле и электронные лампы.

В пожароопасных и взрывоопасных условиях до сих пор применяют пневматические логические устройства (пневмоника).

Наиболее распространены электронные реализации битовых операций при помощи транзисторов, например резисторно-транзисторная логика (РТЛ), диодно-транзисторная логика (ДТЛ), эмиттерно-связанная логика (ЭСЛ), транзисторно-транзисторная логика (ТТЛ), N-МОП логика, КМОП логика и др.

Одной из причин, из-за которой базовые (основные) логические элементы строят на инверторах, а повторители являются дополнительными элементами, было то, что в электронике инверторы (ОЭ) мощнее повторителей (ОК). Но основной причиной является то, что два инвертора заменяют один повторитель, а на повторителях инвертор не построить.

В квантовых вычислениях из перечисленных булевых операций реализуются только НЕ и искл. ИЛИ (с некоторыми оговорками). Квантовых аналогов И, ИЛИ и т. д. не существует.

Схемы аппаратной логики

Результат операции ИЛИ-НЕ или ИЛИ ото всех битов двоичного регистра проверяет, равно ли значение регистра нулю; то же самое взятое от выхода искл. ИЛИ двух регистров проверяет равенство их значений между собой.

Битовые операции применяются в знакогенераторах и графических адаптерах; особенно велика была их роль в адаптере EGA в режимах с 16 цветами — хитроумное сочетание аппаратной логики адаптера с логическими командами центрального процессора позволяет рассматривать EGA как первый в истории графический ускоритель.

Использование в программировании

Благодаря реализации в арифметическом логическом устройстве (АЛУ) процессора многие их регистровые битовые операции аппаратно доступны в языках низкого уровня. В большинстве процессоров реализованы в качестве инструкции регистровый НЕ; регистровые двухаргументные И, ИЛИ, исключающее ИЛИ; проверка равенства нулю (см. выше); три типа битовых сдвигов, а также циклические битовые сдвиги.

Регистровая операция И используется для сброса конкретных битов по битовой маске, ИЛИ — для установки, исключающее ИЛИ — для инвертирования битов регистра по маске, сдвиг влево/вправо — для умножения/деления на 2 и выделения отдельных битов.

Так, например, в сетевых интернет-технологиях операция И между значением IP-адреса и значением маски подсети используется для определения принадлежности данного адреса к подсети.

Дополнительные темы:

  • Бит

  • Битовое поле

  • Двоичная система счисления

  • Двоичная логика

  • Комбинационная логика

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]