Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
тексты студентам.doc
Скачиваний:
3
Добавлен:
19.09.2019
Размер:
88.58 Кб
Скачать

Текст 3.

Theoretische Mechanik

Aus dem Prinzip der extremalen Wirkung lässt sich jedoch der Lagrange-Formalismus herleiten, der für die meisten konkreten Probleme die Methode der Wahl ist. Er liefert eine konsistente formale Methode, um die Bewegungsgleichungen für ein physikalisches System zu bestimmen. Hierbei können insbesondere beliebige Zwangsbedingungen (beispielsweise die Bedingung, dass das Rad eines Fahrrads nur abrollen, aber nicht rutschen soll) einbezogen werden, ohne dass man sich im Voraus überlegen muss, welche Zwangskräfte dabei auftreten; letztere erhält man als Resultat aus dem Formalismus. Der Lagrange-Formalismus liefert auch die Grundlage für den Pfadintegral-Formalismus der Quantenmechanik.

Aus dem Lagrange-Formalismus lässt sich der Hamilton-Formalismus herleiten. Auch dieser ist für die Lösung vieler konkreter Probleme gut geeignet. Zudem eignet er sich gut zur theoretischen Untersuchung der Eigenschaften klassischer Trajektorien. Da er – anders als die bisher vorgestellten Formalismen – im Phasenraum arbeitet, kann er den kompletten mathematischen Apparat der symplektischen Geometrie nutzen. Der Hamilton-Formalismus ist auch die Ausgangsbasis für die kanonische Quantisierung, dem einfachsten Weg, um die Schrödingergleichung für ein physikalisches System aufzustellen.

Aus der Hamiltonschen Mechanik lässt sich wiederum der Hamilton-Jacobi-Formalismus herleiten. Dieser ist wegen der Verwendung partieller Differentialgleichungen in der Regel nicht ideal für die Lösung konkreter Probleme, eignet sich jedoch für theoretische Untersuchungen. Die Hamilton-Jacobi-Gleichung lässt sich auch direkt als erste Näherung der Phase der quantenmechanischen Wellenfunktion aus der Schrödingergleichung bei formaler Entwicklung nach ħ gewinnen. Sie liefern daher einen besonders direkten Zusammenhang zwischen klassischer Mechanik und Quantenmechanik.

Текст 4.

Quantenmechanik

Die Quantenmechanik ist eine physikalische Theorie zur Beschreibung der Materie, ihrer Eigenschaften und Gesetzmäßigkeiten. Sie erlaubt im Gegensatz zu den Theorien der klassischen Physik eine präzise Berechnung der physikalischen Eigenschaften von Materie auch im mikroskopischen bis hin zum subatomaren Größenbereich. Die Quantenmechanik ist damit eine der Hauptsäulen der modernen Physik und bildet die Grundlage zur Beschreibung der Phänomene der Atomphysik, der Festkörperphysik und der Kern- und Elementarteilchenphysik, aber auch verwandter Wissenschaften wie der Quantenchemie.

Die Grundlagen der Quantenmechanik wurden zwischen 1925 und 1935 von Werner Heisenberg, Erwin Schrödinger, Max Born, Pascual Jordan, Wolfgang Pauli, Niels Bohr, Paul Dirac, John von Neumann, Friedrich Hund und weiteren Physikern erarbeitet, nachdem erst die klassische Physik und dann die älteren Quantentheorien bei der systematischen Beschreibung der Vorgänge in den Atomen versagt hatten.

Die Quantenmechanik bezieht sich auf materielle Objekte und modelliert diese als einzelne Teilchen oder als Systeme die aus einer bestimmten Anzahl von einzelnen Teilchen bestehen. Mit diesen Modellen können Elementarteilchen, Atome, Moleküle oder die makroskopische Materie detailliert beschrieben werden. Zur Berechnung von deren möglichen Zuständen mit ihren jeweiligen physikalischen Eigenschaften und Reaktionsweisen wird ein der Quantenmechanik eigener mathematischer Formalismus genutzt.

Die Quantenmechanik unterscheidet sich nicht nur in ihrer mathematischen Struktur grundlegend von der klassischen Physik. Sie verwendet Begriffe und Konzepte, die sich der Anschaulichkeit entziehen und auch einigen Prinzipien widersprechen, die in der klassischen Physik als fundamental und selbstverständlich angesehen werden. Durch Anwendung von Korrespondenzregeln und Konzepten der Dekohärenztheorie können viele Gesetzmäßigkeiten der klassischen Physik als Grenzfälle der Quantenmechanik beschrieben werden, allerdings gibt es auch zahlreiche Quanteneffekte ohne klassischen Grenzfall. Zur Deutung der Theorie wurde eine Reihe verschiedener Interpretationen entwickelt, die sich insbesondere in ihrer Konzeption des Messprozesses und in ihren metaphysischen Prämissen unterscheiden.