Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
коллоквиум№2.doc
Скачиваний:
21
Добавлен:
19.09.2019
Размер:
1.33 Mб
Скачать

17. Как вычисляется магнитное поле тонкого соленоида?

Если намотать провод на цилиндрический каркас, то получится устройство, называемое соленоидом. Поле на оси тонкого соленоида (однослойного или малослойного, т.е. там, где толщина обмотки мала сравнительно с диаметром) вычисляется по формуле:

H=0.5 nJ(cos 1+ cos)

где n=N/L ‑ число витков на единицу длины соленоида, J ‑ ток, протекающий по соленоиду, 1 и 2 углы, под которыми видны концы соленоида из точки на его оси, к которой относится величина H. В случае достаточно длинного соленоида, когда углы 1 и 2 близки к нулю, поле в середине соленоида можно вычислить по формуле: H = nJ = j(R2 ‑ R1)

j ‑ плотность тока: j=J/s, J ‑ ток через провод, s ‑ площадь поперечного сечения провода,  ‑ коэффициент заполнения.

Магнитное поле максимально в центре соленоида и спадает к его концам. Из соображений симметрии легко показать, что поле на краю соленоида длиной L равно половине поля в центре соленоида длиной 2L.

Поле на оси тонкого соленоида вычисляется как сумма (точнее интеграл) от поля, создаваемого витками одного радиуса, рассредоточенными равномерно по оси вращения соленоида:

l = ‑ Rctg

dl =Rd /sin2

dJ=Jndl=(JN/L) dl

Поле на оси толстого соленоида вычисляется как сумма (точнее интеграл) по слоям от полей (т.е. по радиусу), создаваемых тонкими соленоидами (здесь d дифференциал):

, x=R/l, dR=ldx

R1 и R2  ‑ внутренний и внешний радиусы соленоида,

l1 и l2 ‑ расстояния от точки, в которой вычисляется поле до краев соленоида.

Проверим эту сложную формулу: в простом предельном случае тонкого длинного соленоида мы должны получить: H=JN/L=Jn=j(R2-R1)

37. Чему равна плотность энергии магнитного поля?

Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения[1], магнитная составляющая электромагнитного поля[2]

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля.

Основной силовой характеристикой магнитного поля является вектор магнитной индукции (вектор индукции магнитного поля)[3][4]. С математической точки зрения  — векторное поле, определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал.

Нередко в литературе в качестве основной характеристики магнитного поля в вакууме (то есть в отсутствие магнитной среды) выбирают не вектор магнитной индукции а вектор напряженности магнитного поля , что формально можно сделать, так как в вакууме эти два вектора совпадают[5]; однако в магнитной среде вектор не несет уже того же физического смысла[6], являясь важной, но всё же вспомогательной величиной. Поэтому при формальной эквивалентности обоих подходов для вакуума, с систематической точки зрения следует считать основной характеристикой магнитного поля именно

Магнитное поле можно назвать особым видом материи[7], посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом.

Магнитные поля являются необходимым (в контексте специальной теории относительности) следствием существования электрических полей.

Вместе, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются, в частности, свет и все другие электромагнитные волны.

Электрический ток(I), проходя по проводнику, создает магнитное поле (B) вокруг проводника.

С точки зрения квантовой теории поля магнитное взаимодействие — как частный случай электромагнитного взаимодействия переносится фундаментальным безмассовым бозоном — фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля), часто (например, во всех случаях статических полей) — виртуальным. Единицы измерения

Величина B в системе единиц СИ измеряется в теслах, в системе СГС в гауссах.Векторное поле H измеряется в амперах на метр (А/м) в системе СИ и в эрстедах в СГС. Эрстеды и гауссы являются тождественными величинами, их разделение является чисто терминологическим.

Энергия магнитного поля.Приращение плотности энергии магнитного поля равно:

где:H — напряжённость магнитного поля,B — магнитная индукция

В линейном тензорном приближении ( ) плотность энергии равна:

где:  — тензор магнитной проницаемости,  — диагональные компоненты этого тензора,  — магнитная постоянная

В изотропном линейном магнетике:

где:  — относительная магнитная проницаемостьВ вакууме и: Энергию магнитного поля в катушке индуктивности можно найти по формуле:

где:Ф — магнитный поток,I — ток,L — индуктивность катушки или витка с током

Вопрос 38

Существует четыре так называемых структурных уравнения Максвелла, которые в интегральной форме выглядят следующим образом

;

;

;

.

Вопрос 18

Индукти́вность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность[1], краем которой является этот контур.[2][3][4].

В формуле

 — магнитный поток,   — ток в контуре,   — индуктивность.

  • Нередко говорят об индуктивности прямого длинного провода(см.). В этом случае и других (особенно - в не отвечающих квазистационарному приближению) случаях, когда замкнутый контур непросто адекватно и однозначно указать, приведенное выше определение требует особых уточнений; отчасти полезным для этого оказывается подход (упоминаемый ниже), связывающий индуктивность с энергией магнитного поля.

Через индуктивность выражается ЭДС самоиндукции в контуре, возникающая при изменении в нём тока[4]:

.

Из этой формулы следует, что индуктивность численно равна ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

При заданной силе тока индуктивность определяет энергию магнитного поля, создаваемого этим током[4]:

.

Практически участки цепи со значительной индуктивностью выполняют в виде катушек индуктивности[4]. Элементами малой индуктивности (применяемыми для больших рабочих частот) могут быть одиночные (в том числе и неполные) витки или даже прямые проводники; при высоких рабочих частотах необходимо учитывать индуктивность всех проводников[5].

Для имитации индуктивности, т.е. ЭДС на элементе, пропорциональной и противоположной по знаку скорости изменения тока через этот элемент, в электронике используются[6] и устройства, не основанные на электромагнитной индукции (см. Гиратор); такому элементу можно приписать определенную эффективную индуктивность, используемую в расчетах полностью (хотя вообще говоря с определенными ограничивающими условиями) аналогично тому, как используется обычная индуктивность.

Единицы измерения индуктивности в системе СИ:

 

Индуктивность катушки зависит от: числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды  ( возможен сердечник).

6)

фундаментальной характеристикой магнитного поля является именно вектор магнитной индукции B, именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряженность магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём и состоит её ценность: ведь H создают так называемые свободные токи, которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи - то есть токи молекулярные и т.п. - учитывать не надо).

Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля[1]. Энергия магнитного поля как такового выражается только через фундаментальное B. Тем не менее, мы и из этого видим, что величина H феноменологически и тут весьма удобна.

26)

МАГНИТНАЯ ПРОНИЦАЕМОСТЬ

физич. величина, характеризующая изменение магнитной индукции В среды при воздействии магн. поля H. Обозначается m, у изотропных сред m=В/m0Н (в ед. СИ, m0 — магнитная постоянная), у анизотропных кристаллов М. п.— тензор. М. п. связана с магнитной восприимчивостью c соотношением: m=1+4pc (в СГС системе единиц), m=1+c (в ед. СИ). Для физ. вакуума (в отсутствии в-ва) c=0 и m=1. У диамагнетиков c<0, m<1, у пара- и ферромагнетиков c>0 и m>1. В зависимости от того, определяется ли m в статич. или перем. магн. поле, её называют соответственно статической или д и н а м и ч е с к ой М. п. Значения этих М. и. не совпадают, т. к. на намагничивание среды в перем. полях влияют вихревые магнитная вязкость и резонансные явления. В перем. магн. полях, изменяющихся по закону синуса (косинуса), M. п. можно представить в комплексной форме: m=m1-im2, где m1 характеризует обратимые процессы намагничивания, a m2 — процессы рассеяния энергии магн. поля (потери на вихревые токи, магн. вязкость и т. д.).

М. п. ферромагнетиков сложно зависит от H, для описания этой зависимости вводят понятия дифференциальной, начальной и максимальной статич. М. п. В образцах конечных размеров из-за существования у них магн. полюсов и размагничивающего поля величина М. п. меньше, чем m в-ва этих образцов. Поэтому различают М. п. образца mо (при наличии размагничивающего фактора N) и М. п. в-ва образца m (в отсутствии N):

mo=m(1+N(m-1)) (в ед. СИ). Значения mo и N зависят от формы и размеров образца.

МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ

величина, характеризующая связь намагниченности в-ва с магн. полем в этом в-ве.

М. в. c в статич. полях равна отношению намагниченности в-ва J к напряжённости Н намагничивающего поля: c=J/H; c — величина безразмерная. М. в., рассчитанная на 1 кг (или 1 г) в-ва, наз. удельной (cуд=c/r, где r — плотность в-ва), а М. в. одного моля — молярной (или атомной): c=cуд•М, где М — молекулярная масса в-ва. С магнитной проницаемостью m M. в. в статич. полях (статич. М. в.) связана соотношениями: m=1+4pc (в ед. СГС), m=1+c (в ед. СИ).

М. в. может быть как положительной, так и отрицательной. Отрицательной обладают диамагнетики, они намагничиваются против поля; положительной — парамагнетики и ферромагнетики, они намагничиваются по полю. М. в. диамагнетиков и парамагнетиков мала (=10-4—10-6), она слабо зависит от Н и то лишь в области очень сильных полей (и низких темп-р). Значения М. в. см. в табл.

АТОМНАЯ (МОЛЯРНАЯ) МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ НЕКОТОРЫХ ДИАМАГНЕТИКОВ И ПАРАМАГНЕТИКОВ 

14.

Рассмотрим поведение в магнитном поле прямоугольной рамки с током, имеющей неподвижную ось. Силы Ампера, действуют на стороны рамки, ориентированные перпендикулярно к силовым линиям. Эти силы создадут пару сил, момент которых будет поворачивать рамку вокруг оси: сначала момент будет увеличивать угловую скорость рамки, пока она не встанет перпендикулярно к силовым линиям поля, затем по инерции рамка будет продолжать движение, но момент пары сил будет ее тормозить до тех пор, пока не остановит в положении, симметричном начальному. Затем рамка начнет двигаться в обратном направлении. Возникнут крутильные колебания рамки.

Если в тот момент, когда рамка встанет перпендикулярно к силовым линиям поля, изменить направление тока на прямо противоположное, то рамка будет вращаться в одном направлении. По такому принципу работает двигатель постоянного тока.

На рамку с током I, помещенную во внешнее однородное магнитное поле с индукцией действует момент сил Момент сил выражается соотношением: M = I S B sin α = pmB sin α ,

где S – площадь рамки, α – угол между нормалью n к плоскости рамки и вектором B. Векторная величина где – единичный вектор нормали, называется магнитным моментом рамки. Направление вектора связано с направлением тока в рамке правилом правого винта.

34.

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ ТОКА

Вокруг проводника с током существует магнитное поле, которое обладает энергией.

Откуда она берется? Источник тока, включенный в эл.цепь, обладает запасом энергии.

В момент замыкания эл.цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля.

Энергия магнитного поля равна собственной энергии тока.

Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока.

Куда пропадает энергия магнитного поля после прекращения тока? - выделяется ( при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги)