Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОИТ к зачёту.docx
Скачиваний:
2
Добавлен:
18.09.2019
Размер:
2.09 Mб
Скачать

1. В современных базах данных хранятся не только данные, но и информация. База данных (БД)– организованная структура, предназначенная для хранения информации. Современные БД позволяют размещать в своих структурах не только данные, но и методы (т.е. программный код), с помощью которых происходит взаимодействие с потребителем или другими программно-аппаратными комплексами.

Системы управления базами данных (СУБД) – комплекс программных средств, предназначенных для создания структуры новой базы, наполнения ее содержанием, редактирования содержимого и визуализации информации. Под визуализацией информации базы понимается отбор отображаемых данных в соответствии с заданным критерием, их упорядочение, оформление и последующая выдача на устройство вывода или передача по каналам связи.

Существует много систем управления базами данных. Они могут по-разному работать с разными объектами и предоставляют пользователю разные функции и средства. Большинство СУБД опираются на единый устоявшийся комплекс основных понятий.

№2. Если в БД нет никаких данных ( пустая база ), то это все равно полноценная БД, т.к. она содержит информацию о структуре базы. Структура базы определяет методы занесения данных и хранения их в базе.

БД могут содержать различные объекты. Основными объектами БД являются таблицы. Простейшая база данных имеет хотя бы одну таблицу. Структура простейшей базы данных тождественно равна структуре ее таблицы.

Структуру двумерной таблицы образуют столбцы и строки. Их аналогами в структуре простейшей базы данных являются поля и записи . Если записей в таблице нет, то ее структура образована набором полей. Изменив состав полей базовой таблицы (или их свойства), тем самым изменяем структуру данных, и, соответственно, получаем новую базу данных.

Поля БД определяют групповые свойства данных, записываемых в ячейки, принадлежащие каждому из полей. Например, свойства полей могут быть такими: имя поля, тип поля, размер поля, формат поля, маска ввода, подпись, значение по умолчанию, условие на значение, обязательное поле, индексированное поде, пустые строки, и т.д. Типы данных: текстовый, числовой, денежный, дата/время, счетчик, поле мемо (большой объем текста), логический, поле объекта OLE (для мультимедийных объектов), гиперссылка, место подстановок.

№3 Типы данных

Название поля

Описание

Text (Тип данных текстовый).

Символьные, текстовые данные, объем которых недолжен, превышать 255 символов, по умолчанию 50.

Memo (Тип данных текстовый).

Текстовый тип данных, ограничения до 64000 символов, поля этого типа не индексируются.

Integer (Тип данных числовой).

Числовые данные, размер которых определяется, числом, указанным в свойствах полей.

Data, Time.

Предназначен для хранения даты и времени, или их вместе.

Денежный (Тип данных числовой).

Разновидность типа данных для хранения, денежных эквивалентов, размером 15 разрядов до запятой, и четыре разряда после.

Счетчик (Тип данных числовой).

Является разновидностью числового типа, может иметь только целое значение, автоматически увеличивается на заданный шаг, по умолчанию +1, значения не могут повторяться.

Логический.

Предназначен для хранения логических значений, для команд и операций : лож\истинна, да\нет, true\false, 1\0.

Ole.

Предназначен для хранения объектов (файлов), которые созданы в других приложениях. Поле не индексируется.

Гиперссылка

В полях храниться ссылки, представляющие собой путь к файлу на каком-либо носители, или ресурсе сети.

Мастер подстановок.

Позволяет подставлять значение полей, в виде простого или комбинированного списка.

№4 Трёхуровневая модель организации базы данных

В 1978 году была принята трехуровневая модель организации баз данных, которая была предложена национальным институтом стандартизации и комитетом по планированию выпусков стандартов.

Внешний уровень

|

Концептуальный уровень

|

Внутренний уровень

|

База данных

Внешний уровень – это самый верхний уровень. Отображает представления конечного пользователя о конфигурации данных.

Первичный ключ любой таблицы должен содержать уникальные (неповторяющиеся) непустые значения для данной таблицы. Система управления базы данных должна контролировать уникальность первичных ключей. При попытке пристроить первичному ключу значение, уже имеющееся в другой записи таблицы, выдается сообщение об ошибке первичного ключа.

С появлением ПВЭМ реляционные модели стали доминировать среди систем базы данных. Быстрому распространению реляционной модели данных способствовало 3 фактора:

- во первых, в реляционной системе данные представляются в виде таблиц, встречающиеся в повседневной практике.

- Реляционная база – это конечный набор отношений. Тория реляционной базы данных становится областью математической логики и реляционной алгебры.

- Основная единица обработки в сетевых и иерархических моделях данных множество записей, т.е. отношение.

№5 Иерархическая модель организации базы данных

Иерархическая модель позволяет строить БД с иерархической древовидной структурой. Структура ИМД описывается в терминах, аналогичных терминам сетевой модели данных (версия CODASYL). Группу в ИМД принято называть сегментом. В основе ИМД лежит понятие дерева.

Дерево – это связный неориентированный граф, который не содержит циклов. При работе с деревом выделяют какую-то конкретную вершину, определяют её как корень дерева и рассматривают особо – в эту вершину не заходит ни одно ребро. В этом случае дерево становится ориентированным, ориентация определяется от корня. Дерево как ориентированный граф определяется так:

  • имеется единственная особая вершина, называемая корнем, в которую не заходит ни одно ребро;

  • во все остальные вершины заходит только одно ребро, а исходит произвольное количество ребер;

  • граф не содержит циклов.

Конечные вершины, то есть вершины, из которых не выходит ни одной дуги, называются листьями дерева. Количество вершин на пути от корня к листьям в разных ветвях дерева может быть различным.

В иерархических моделях данных используется ориентация древо-видной структуры от корня к листьям. Графическая диаграмма концептуальной схемы базы данных называетсядеревом определения. Пример иерархической базы данных приведён на рис. 2.6. Каждая некорневая вершина в ИМД связана с родительской вершиной (сегментом) иерархическим групповым отношением. Каждая вершина дерева соответствует типу сущности ПО. Тип сущности характеризуется произвольным количеством атрибутов, связанных с ней отношением 1:1. Атрибуты, связанные с сущностью отношением 1:n, образуют отдельную сущность (сегмент) и переносятся на следующий уровень иерархии. Реализация связей типа n:m не поддерживается.

Тип вершины определяется типом сущности и набором её атрибутов. Каждая вершина дерева хранит экземпляры сущностей – записи. Следствием внутренних ограничений иерархической модели является то, что каждому экземпляру зависимой группы в БД соответствует уникальное множество экземпляров родительских записей – по одному экземпляру (записи) каждого типа вершин вышестоящих уровней.

По сравнению с СМД иерархическая имеет ограниченный набор режимов включения и исключения подчинённых записей. Это определяется обязательностью связей: в дереве не может быть «висячих» вершин, не связанных с вершиной верхнего уровня (кроме корневой). Поэтому ИМД не поддерживает необязательный класс членства и ручной режим включения записей.

В ИМД предусмотрены специальные способы навигации. Передвижение по дереву всегда начинается с корневой вершины, от которой можно перейти на конкретный экземпляр записи любой вершины следующего уровня. Эта вершина становится текущей вершиной, а экземпляр – текущей записью. От этой записи можно перейти к другой записи данной вершины, к экземпляру записи родительской вершины или к экземпляру записи подчинённой вершины. Т.о., попасть в любую вершину можно, только проделав полный путь по дереву от корня. Связи между записями в ИМД обычно выполнены в виде ссылок (т.е. хранятся адреса связанных записей).

Корневая запись дерева должна содержать ключ с уникальным значением. Ключи некорневых записей должны иметь уникальные значения только в экземплярах групповых отношений, т.е. на одном и том же уровне иерархии в разных ветвях дерева могут быть экземпляры записей с одинаковыми ключами. Это объясняется тем, что каждая запись идентифицируется полным сцепленным ключом, который образуется путём конкатенации всех ключей экземпляров родительских записей. Например, для студента (рис. 2.6) ключ – это (Шифр_факультета+Номер_курса+Номер_группы+Номер_зачётной_книжки).

Основным недостатком ИМД является дублирование данных. Оно вызвано тем, что каждая сущность (атрибут) может относиться только к одной родительской сущности. Например, если в БД хранятся данные о детях сотрудников, а на предприятии работает и отец, и мать ребёнка, то сведения об этом ребёнке нужно хранить дважды. Аналогичная ситуация возникает, если нужно отразить в БД связь «многие-ко-многим». Дублирование данных может вызвать нарушение логической целостности БД при внесении изменений в эти данные.

Если данные имеют естественную древовидную структуризацию, то ис-пользование иерархической модели данных не вызывает проблем. Но на практике часто требуется реализовать структуры данных, отличные от иерархической. Для решения этих задач конкретные СУБД, основанные на ИМД, включают дополнительные средства, облегчающие представление произвольно организованных данных.

В качестве примера типичного представителя иерархических СУБД можно привести систему IMS (Information Management System, IBM).

Сетевая и иерархическая модели данных относятся к базам данных I-го поколения (60-е – начало 70-х гг. XX века). Эти модели не смогли в полной мере реализовать независимость данных от программ. Из-за особенностей их организации структура запросов к данным в таких системах определяется наличием связей между записями.

№6 Сетевая модель организации базы данных

К основным понятиям сетевой модели базы данных относятся: уровень, элемент (узел), связь.

Узел — это совокупность атрибутов данных, описывающих некоторый объект. На схеме иерархического дерева узлы представляются вершинами графа. В сетевой структуре каждый элемент может быть связан с любым другим элементом.

Сетевые базы данных подобны иерархическим, за исключением того, что в них имеются указатели в обоих направлениях, которые соединяют родственную информацию.

Несмотря на то, что эта модель решает некоторые проблемы, связанные с иерархической моделью, выполнение простых запросов остается достаточно сложным процессом.

Также, поскольку логика процедуры выборки данных зависит от физической организации этих данных, то эта модель не является полностью независимой от приложения. Другими словами, если необходимо изменить структуру данных, то нужно изменить и приложение.

№7 Реляционная модель. Первичный и внешний ключ

Недостатки иерархической и сетевой моделей привели к появлению новой, реляционной модели данных, созданной Коддом в 1970 году и вызвавшей всеобщий интерес. Реляционная модель была попыткой упростить структуру базы данных. В ней отсутствовали явные указатели на предков и потомков, а все данные были представлены в виде простых таблиц, разбитых на строки и столбцы. На рис. 1.5. показана реляционная версия сетевой базы данных, содержащей информацию о заказах и приведенной на рис.1.4

К сожалению, практическое определение понятия "реляционная база данных" оказалось гораздо более расплывчатым, чем точное математическое определение, данное этому термину Коддом в 1970 году. В первых реляционных СУБД не были реализованы некоторые из ключевых частей модели Кодда, и этот пробел был восполнен только впоследствии. По мере роста популярности реляционной концепции реляционными стали называться многие базы данных, которые на деле таковыми не являлись.

В ответ на неправильное использование термина "реляционный" Кодд в 1985 году написал статью, где сформулировал 12 правил, которым должна удовлетворять любая база данных, претендующая на звание реляционной. С тех пор двенадцать правил Кодда считаются определением реляционной СУБД. Однако можно сформулировать и более простое определение:

Реляционной называется база данных, в которой все данные, доступные пользователю, организованны в виде таблиц, а все операции над данными сводятся к операциям над этими таблицами.

Приведенное определение не оставляет места встроенным указателям, имеющимся

Перви́чный ключ (англ. primary key) — в реляционной модели данных один из потенциальных ключей отношения, выбранный в качестве основного ключа (или ключа по умолчанию).

Вне́шний ключ (англ. foreign key) — понятие теории реляционных баз данных, относящееся к ограничениям целостности базы данных.

Неформально выражаясь, внешний ключ представляет собой подмножество атрибутов некоторой переменной отношения R2, значения которых должны совпадать со значениями некоторого потенциального ключа некоторой переменной отношения R1.

№8 Постреляционная модель организации базы данных

Постреляционная модель данных представляет собой расширенную ре­ляционную модель, снимающую ограничение неделимости данных, храня­щихся в записях таблиц. Постреляционная модель данных допускает много­значные поля – поля, значения которых состоят из подзначений. Набор значений многозначных полей считается самостоятельной таблицей, встро­енной в основную таблицу.

№9 Объектно-ориентированная модель организации базы данных

Объектно-ориентированная база данных (ООБД) — база данных, в которой данные моделируются в виде объектов, их атрибутов, методов и классов.

При создании объектно-ориентированных СУБД (ООСУБД) используются разные методы, а именно:

  • встраивание в объектно-ориентированный язык средств, предназначенных для работы с БД;

  • расширение существующего языка работы с базами данных объектно-ориентированными функциями;

  • создание объектно-ориентированных библиотек функций для работы с БД;

  • создание нового языка и новой объектно-ориентированной модели данных.

№ 10 Объектно-реляционная модель. Многомерная модель

№ 11 Требования, предъявляемые к базам данных.

№ 12 Жизненный цикл базы данных

№ 13 Этапы проектирования базы данных и их процедуры

Этапы проектирования базы данных и их процедуры проектиро-вание базы данных осуществляется в три этапа: 1) концептуальное проектирование; 2) логическое проектирование; 3) физическое проектирование. Цель этапа концептуального проектирования ‒ создание концеп-туальной модели данных исходя из представлений пользователей о предметной области. Для ее достижения выполняется ряд последова-тельных процедур: • определение сущностей и их документирование; • определение связей между сущностями и их документирование; • создание модели предметной области; • определение атрибутов и их документирование; • определение значений атрибутов и их документирование; • определение первичных ключей для сущностей и их до-кументирование. Цель этапа логического проектирования ‒ преобразование кон-цептуальной модели на основе выбранной модели данных в логиче-скую модель, не зависимую от особенностей используемой в даль-нейшем СУБД для физической реализации базы данных. Для ее дос-тижения выполняются следующие процедуры: • выбор модели данных; • определение набора таблиц и их документирование; • нормализация таблиц; • определение требований поддержки целостности данных и их документирование. • Цель этапа физического проектирования ‒ описание конкрет-ной реализации базы данных, размещаемой во внешней памяти ком-пьютера. • проектирование таблиц базы данных средствами выбранной СУБД; • проектирование физической организации базы данных; разработка стратегии защиты базы данных.

№ 14 Нормализация таблиц

Нормализация – это разбиение таблицы на две или более, обладающих лучшими свойствами при включении, изменении и удалении данных. Окончательная цель нормализации сводится к получению такого проекта базы данных, в котором каждый факт появляется лишь в одном месте, т.е. исключена избыточность информации. Это делается не столько с целью экономии памяти, сколько для исключения возможной противоречивости хранимых данных.

Каждая таблица в реляционной БД удовлетворяет условию, в соответствии с которым в позиции на пересечении каждой строки и столбца таблицы всегда находится единственное атомарное значение, и никогда не может быть множества таких значений. Любая таблица, удовлетворяющая этому условию, называетсянормализованной. Фактически, ненормализованные таблицы, т.е. таблицы, содержащие повторяющиеся группы, даже не допускаются в реляционной БД.

Всякая нормализованная таблица автоматически считается таблицей в первой нормальной форме, сокращенно 1НФ. Таким образом, строго говоря, "нормализованная" и "находящаяся в 1НФ" означают одно и то же. Однако на практике термин "нормализованная" часто используется в более узком смысле – "полностью нормализованная", который означает, что в проекте не нарушаются никакие принципы нормализации.

Теперь в дополнение к 1НФ можно определить дальнейшие уровни нормализации – вторую нормальную форму (2НФ), третью нормальную форму (3НФ) и т.д.

№ 15 Сущность и состав системы управления базы данных

В состав любой современной СУБД включаются средства описания структур баз данных информационного фонда создаваемой ИС и средства манипулирования данными.

   В реляционных СУБД признаки, описывающие объект предметной области называются ПОЛЯМИ, а полное описание одного конкретного объекта совокупностью полей называется ЗАПИСЬЮ. Описание структуры реляционной базы данных представляет собой перечень всех полей данных с указанием уникального ИМЕНИ ПОЛЯ, ТИПА ХРАНИМЫХ ДАННЫХ, МАКСИМАЛЬНОЙ ДЛИНЫ ПОЛЯ (если поле числовое, то указывается число ПОЗИЦИЙ ДРОБНОЙ ЧАСТИ).

   Средства манипулирования данными позволяют выполнять операции по вводу, изменению и удалению данных, а так же реализации ЗАПРОСОВ. Запрос - вывод данных, удовлетворяющих определенным критериям, задаваемым пользователем. 

Существуют три вида общих запросов:

  1. Проекция - вывод всех записей базы данных для указанных пользователем полей.

  2. Выборка - вывод записей удовлетворяющих определенному пользователем условием по всем полям базы данных.

  3. Смешанный запрос - вывод записей удовлетворяющих определенному пользователем условии по полям указанным пользователем.

Для ускорения процедур поиска записей в базах данных создаются специальные индексные файлы - файлы указывающие порядок обработки записей (вывод, поиск, модификация).  Индексные файлы содержат упорядоченные значения основных (ключевых) полей базы данных (или комбинации значений полей), связанные с внутренним (физическим номером соответствующих записей. Индексные файлы  используются при реализации отношений 1:N.

 В состав СУБД включают собственные языковые средства для реализации функций обработки данных (VFoxPro) или используют стандартные (VBasic). Это позволяет разработчику создавать наиболее эффективные приложения.

   Кроме перечисленных средств в состав СУБД включены средства АВТОМАТИЗАЦИИ ПРОГРАММИРОВАНИЯ, называемые ГЕНЕРАТОРАМИ. Эти средства автоматически формируют тексты программ реализующие в рамках СУБД те или иные фагменты создаваемой пользователем конкретной ИС. Например,ГЕНЕРАТОР ОТЧЕТОВ - формирует сводку данных из базы по задаваемым пользователем формам, ГЕНЕРАТОР ЭКРАННЫХ ФОРМ - формирует программные фрагменты, реализующие диалог пользователя при вводе и выводе данных на экран, ГЕНЕРАТОР МЕНЮ - формирует программные фрагменты, реализующие меню различной степени разветвленности, ГЕНЕРАТОР ЗАПРОСОВ - формирует программные фрагменты реализующие запросы пользователя по задаваемому образцу, ГЕНЕРАТОР ПРИЛОЖЕНИЙ - связывает все созданные программные фрагменты в единую программную систему - готовую конкретную ИС.

№ 16 Архитектура системы управления базами данных

СУБД должна предоставлять доступ к данным любым пользователям, включая и тех, которые практически не имеют и (или) не хотят иметь представления о:

  • физическом размещении в памяти данных и их описаний;

  • механизмах поиска запрашиваемых данных;

  • проблемах, возникающих при одновременном запросе одних и тех же данных многими пользователями (прикладными программами);

  • способах обеспечения защиты данных от некорректных обновлений и (или) несанкционированного доступа;

  • поддержании баз данных в актуальном состоянии

и множестве других функций СУБД.

При выполнении основных из этих функций СУБД должна использовать различные описания данных. А как создавать эти описания?

Естественно, что проект базы данных надо начинать с анализа предметной области и выявления требований к ней отдельных пользователей (сотрудников организации, для которых создается база данных). Подробнее этот процесс будет рассмотрен ниже, а здесь отметим, что проектирование обычно поручается человеку (группе лиц) – администратору базы данных (АБД). Им может быть как специально выделенный сотрудник организации, так и будущий пользователь базы данных, достаточно хорошо знакомый с машинной обработкой данных.

Объединяя частные представления о содержимом базы данных, полученные в результате опроса пользователей, и свои представления о данных, которые могут потребоваться в будущих приложениях, АБД сначала создает обобщенное неформальное описание создаваемой базы данных. Это описание, выполненное с использованием естественного языка, математических формул, таблиц, графиков и других средств, понятных всем людям, работающих над проектированием базы данных, называют инфологической моделью данных (рис. 1.3).

Рис. 1.3. Уровни моделей данных

Такая человеко-ориентированная модель полностью независима от физических параметров среды хранения данных. В конце концов этой средой может быть память человека, а не ЭВМ. Поэтому инфологическая модель не должна изменяться до тех пор, пока какие-то изменения в реальном мире не потребуют изменения в ней некоторого определения, чтобы эта модель продолжала отражать предметную область.

Остальные модели, показанные на рис. 1.3, являются компьютеро-ориентированными. С их помощью СУБД дает возможность программам и пользователям осуществлять доступ к хранимым данным лишь по их именам, не заботясь о физическом расположении этих данных. Нужные данные отыскиваются СУБД на внешних запоминающих устройствах по физической модели данных.

Так как указанный доступ осуществляется с помощью конкретной СУБД, то модели должны быть описаны на языке описания данных этой СУБД. Такое описание, создаваемое АБД по инфологической модели данных, называют даталогической моделью данных.

Трехуровневая архитектура (инфологический, даталогический и физический уровни) позволяет обеспечить независимость хранимых данных от использующих их программ. АБД может при необходимости переписать хранимые данные на другие носители информации и (или) реорганизовать их физическую структуру, изменив лишь физическую модель данных. АБД может подключить к системе любое число новых пользователей (новых приложений), дополнив, если надо, даталогическую модель. Указанные изменения физической и даталогической моделей не будут замечены существующими пользователями системы (окажутся "прозрачными" для них), так же как не будут замечены и новые пользователи. Следовательно, независимость данных обеспечивает возможность развития системы баз данных без разрушения существующих приложений.

№ 17 Классификация систем управления базами данных

Под определение СУБД может попасть любой программный продукт, способный поддерживать процессы проектирования, администрирования и использования базы данных, поэтому была разработана классификация СУБД по видам программ:

1) полнофункциональные – самые многочисленные и мощные по своим возможностям программы, например Microsoft Access, Microsoft FoxPro, Clarion Database Developer и др.;

2) серверы баз данных – применяются для организации центров обработки данных в сетях ЭВМ. Среди них программы Microsoft SQL Server, NetWare SQL фирмы Novell;

3) клиенты баз данных – различные программы (полнофункциональные СУБД, электронные таблицы, текстовые процессоры и т. д.), обеспечивающие большую производительность вычислительной сети, если клиентская и серверная части базы данных будут произведены одной фирмой, но такое условие не является обязательным;

4) средства разработки программ работы с базами данных – предназначены для разработки таких программных продуктов, как клиентские программы, серверы баз данных и их отдельные приложения, а также пользовательские приложения. Средствами разработки пользовательских приложений служат системы программирования, библиотеки программ для различных языков программирования, пакеты автоматизации разработок. Самыми часто используемыми средствами разработки пользовательских приложений являются инструментальные средства Delphi фирмыBorland и Visual Basic фирмы Microsoft.

По виду применения СУБД подразделяются на персональные и многопользовательские.

Персональные СУБД (например, Visual FoxPro, Paradox, Access) используются при проектировании персональных баз данных и недорогих приложений, работающих с ними, которые, в свою очередь, могут применяться в качестве клиентской части многопользовательской СУБД.

Многопользовательские СУБД (например, Oracle и Informix) состоят из сервера баз данных и клиентской части и способны работать с различными типами ЭВМ и ОС различных фирм-производителей.

Чаще всего информационные системы строятся на основе архитектуры клиент-сервер, в которую входят вычислительная сеть и распределенная база данных. Вычислительная сетьиспользуется для организации научной работы на ПК и в сетях. Распределенная база данных состоит из многопользовательской базы данных, размещенной на компьютере-сервере, и персональной базы данных, находящейся на рабочих станциях. Сервер базы данных осуществляет выполнение основного объема обработки данных.

№ 18 Функции систем управления базами данных

  • управление данными во внешней памяти (на дисках);

  • управление данными в оперативной памяти с использованием дискового кэша;

  • журнализация изменений, резервное копирование и восстановление базы данных после сбоев;

  • поддержка языков БД (язык определения данных, язык манипулирования данными).

№ 19 Характеристика СУБД Access

база данных - это инструмент для хранения и организации информации. Примерами баз данных являются: записная книжка, справочники, словари. Access является популярной системой управления базами данных (СУБД). Как и другие продукты этой категории, предназначена для хранения и поиска данных, представления информации в удобном виде и автоматизации часто повторяющихся операций (таких, как ведение счетов, учет, планирование и т.п.). С помощью Access можно разрабатывать простые и удобные формы ввода данных, а также осуществлять обработку данных и выдачу сложных отчетов.Главное окно приложения Microsoft Access состоит из следующих областей: строка заголовка; строка меню; панель инструментов; окно базы данных; строка состояния. Системы управления базами данных (СУБД) – это комплекс программных средств, предназначенных для создания, ведения и организации совместного доступа к базе данных множеству пользователей. Современные СУБД в основном являются приложениями операционной системы Windows, так как данная среда позволяет более полно использовать возможности персональной ЭВМ по сравнению с операционной системой DOS.

№ 20 Настройка рабочей среды в СУБД Access

№21 Типы данных, обрабатываемые в СУБД Access

В MS Access возможно использование следующих типов данных:

1) Текстовый – служит для хранения алфавитно-цифровой информации. Длина поля не должна превышать 255 символов;

2) Поле MEMO – предназначен для хранения алфавитно-цифровой информации длиной до 65535 символов;

3) Числовой – используется для числовых данных, участвующих в расчетах;

4) Дата / время – дата и (или) время, лежащие в диапазоне от 100 до 9999 года;

5) Денежный – применяется для денежных значений и числовых данных, используемых в математических расчетах, проводящихся с точностью до 15 знаков в целой и до 4 знаков в дробной части;

6) Счетчик – служит для формирования уникальных последовательно возрастающих или случайных чисел, автоматически вводящихся в поле при добавлении каждой новой записи в таблицу. Значения полей типа Счетчик изменять нельзя;

7) Логический – предназначен для логических значений (Да / Нет, Истина / Ложь). Длина логического поля – 1 бит;

8) Поле объекта OLE – любой объект в двоичном формате (документ Word, таблица Excel, рисунок, звукозапись), связанный или внедренный в таблицу MS Access. Размер такого поля не дожжен превышать 1 Гбайт;

9) Гиперссылка - строка, состоящая из букв и цифр, представляющая адрес гиперссылки. Адрес гиперссылки может состоять максимум из трех частей:

а) текст - текст, выводимый в поле или в элементе управления; б) адрес - путь к файлу (в формате пути UNC) или странице (адрес URL);

в) дополнительный адрес - смещение внутри файла или страницы;

10) Мастер подстановок - создает поле, в котором предлагается выбор значений из списка, или из поля со списком, содержащего набор постоянных значений или значений из другой таблицы. Выбор этого параметра в списке в ячейке запускает мастера подстановок, который определяет тип поля.

№ 22 Проектирование форм в СУБД Access

Access предоставляет возможность вводить данные как непосредственно в таблицу, так и с помощью форм. Форма в БД - это структурированное окно, которое можно представить так, чтобы оно повторяло форму бланка. Формы создаются из набора отдельных элементов управления. Внешний вид формы выбирается в зависимости от того, с какой целью она создается. Формы Access  позволяют выполнять задания, которые нельзя выполнить в режиме таблицы. Формы позволяют вычислять значения и выводить на экран результат. Источником данных для формы являются записи таблицы или запроса. Форма предоставляет возможности для:

 ввода и просмотра информации базы данных

 изменения данных

 печати

 создания сообщений Способы создания форм:

 Конструктор форм (предназначен для создания формы любой сложности)

 Мастер форм (позволяет создавать формы различные как по стилю, так и по содержанию)

 Автоформа: в столбец (многостраничная – поля для записи выводятся в один столбец, в форме одновременно отображаются данные для одной записи)

 Автоформа: ленточная (все поля записи выводятся в одну строку, в форме отображаются все записи)

 Автоформа: табличная (отображение записей осуществляется в режиме таблица)

 Автоформа: сводная таблица

 Автоформа: сводная диаграмма

 Диаграмма (создается форма с диаграммой, построенной Microsoft Graph)

 Сводная таблица (создается форма Access, отображаемая в режиме сводной таблицы Excel) Алгоритм создания форм следующий: 

 Открыть окно БД

 В окне БД выбрать вкладку Формы

 Щелкнуть на пиктограмме Создать, расположенной на панели инструментов окна БД

 В появившемся диалоговом окне «Новая форма» Выбрать способ создания формы и источник данных

 Щелкнуть на кнопке ОК.

№23 Проектирование отчётов с СУБД Access

В Microsoft Access можно создавать отчеты различными способами:

 Конструктор

 Мастер отчетов

 Автоотчет: в столбец

 Автоотчет: ленточный

 Мастер диаграмм

 Почтовые наклейки

Мастер позволяет создавать отчеты с группировкой записей и представляет собой простейший способ создания отчетов. Он помещает выбранные поля в отчет и предлагает шесть стилей его оформления. После завершения работы Мастера полученный отчет можно доработать в режиме Конструктора. Воспользовавшись функцией Автоотчет, можно быстро создавать отчеты, а затем вносить в них некоторые изменения. Для создания Автоотчета необходимо выполнить следующие действия:

 В окне базы данных щелкнуть на вкладке Отчеты и затем щелкнуть на кнопке Создать. Появится диалоговое окно Новый отчет. 

 Выделить в списке пункт Автоотчет: в столбец или Автоотчет: ленточный. 

 В поле источника данных щелкнуть на стрелке и выбрать в качестве источника данных таблицу или запрос.

 Щелкнуть на кнопке ОК. 

 Мастер автоотчета создает автоотчет в столбец или ленточный (по выбору пользователя), и открывает его в режиме Предварительного просмотра, который позволяет увидеть, как будет выглядеть отчет в распечатанном виде. 

 В меню Файл щелкнуть на команде Сохранить. В окне Сохранение в поле Имя отчета указать название отчета и щелкнуть на кнопке ОК. 

№ 24. Сущность и назначение языка SQL

Большинство СУБД используют язык SQL (Structured Query Language — язык структурированных запросов), так как он удобен для описания логических подмножеств БД. Назначение SQL: - создание БД и таблицы с полным описанием их структуры; - выполнение основных операций манипулирования данными (такие как вставка, модификация и удаление данных из таблиц); - выполнение простых и сложных запросов. Одна из ключевых особенностей языка SQL заключается в том, что с его помощью формируются запросы, описывающие какую информацию из базы данных необходимо получить, а пути решения этой задачи программа определяет сама.

№ 25 Структура команды SQL

№ 26 Сущность и компоненты компьютерной сети

Компьютерная сеть состоит из трех основных компонент, которые должны работать согласованно. Для корректной работы устройств в сети их нужно правильно инсталлировать и установить рабочие параметры.

Основными компонентами сети являются.

  1. Оборудование

    • концентраторы (хабы)

    • сетевые адаптеры

  2. Коммуникационные каналы

    • кабели

    • разъемы

  3. Сетевая операционная система

    • Windows for Workgroups

    • LANtastic

№ 27 Классификация компьютерных сетей

Все компьютерные сети деляться на три большие категории, на каждую из которых есть соответствующие ограничения в монтаже и содержании таких сетей.

  • LAN (Local Area Network) - локальная вычислительная сеть, самый распрастраненный тип вычислительных сетей, встречается в жилых домах, в конторах, в игротеках в офисах мелких и крупных компаний и т. д.. Отличается от всех последующих простотой создания и администрирования, то есть мелкому офису при небольшом торговом центре не обязательно нанимать на работу системного администратора чтобы он следил за локальной сеткой и в случае неисправности начинал ее исправлять, это лишнее. Тем более что если куплено хорошее оборудование, то сеть будет работать устойчиво. Существует так же одна небольшая подгруппа LAN - HAN(Home Area Network), домашняя вычислительная сеть. Так изредка называют домашние компьютерыне сети. Данный термин применим к сетям, созданным между домашними компьютерами. LAN по определению больше походит как обобщающий термин: компьютерные сети офисов и домов. Принципиально между LAN и HAN нет совершенно никакой разницы.

  • MAN (Metropolitan Area Network) - это городская вычислительная сеть. Состоит из провайдеров - поставщиков сети и обычных пользователей - клиентов, которые используют какую-либо линию связи для соединения с остальными членами сети. Такие сети, на данный момент, у нас встречаются довольно редко. Зарубежом создание таких сетей уже давно и плодотворно практикуется.

  • WAN (Wide Area Network) - это глобальная (мировая, региональная) вычислительная сеть, соединяющая провайдеров из разных городов мира в одну единую вычислительную сеть, или все LANы и MANы соеденены в единое целое. Иными словами, WAN - это по сути тот же Интернет, но о нем немного позже.

Локальная   вычислительная   сеть   (ЛВС) 

небольшая группа компьютеров, связанных друг с другом и расположенных обычно в пределах одно­го здания или организации.

Региональная сеть — сеть, соединяющая мно­жество локальных сетей в рамках одного района, города или региона.

Глобальная сеть — сеть, объединяющая компью­теры разных городов, регионов и государств.

Объединение глобальных, региональных и локальных вычислительных сетей позволяет создавать многоуровневые иерархии, которые предоставляют мощные средства для обработки огромных массивов данных и доступ к практически неограниченным информационным ресурсам.

Локальные вычислительные сети (ЛВС) могут входить в качестве компонентов в состав региональной сети; региональные сети — объединяться в составе глобальной сети; наконец, глобальные сети могут образовывать еще более крупные структуры. Самым большим объединением компьютерных се-тей в масштабах планеты Земля на сегодня является «сеть сетей» — Интернет.

Интересным примером связи локальных и глобальных сетей является виртуальная частная сеть (Virtual Private NetworkVPN). Так называется сеть организации, получающаяся в результате объедине-ния двух или нескольких территориально разделен-ных ЛВС с помощью общедоступных каналов глоба-льных сетей, например, через Интернет.

    По типу среды передачи сети делятся на проводные и беспроводные.

По скорости передачи информации сети можно раз-делить на низко-, средне- и высокоскоростные распределения ролей между компью-терами сети бывают одноранговые и клиент-серверные.

Сервер — специально выделенный высокопро­изводительный компьютер, оснащенный соотвествующим программным обеспечением, централизованно управляющий работой сети и/или предоставляющий другим компьютерам сети свои ресурсы (файлы данных, накопители, принтер и т. д.).

Клиентский компьютер (клиент, рабочая стан­ция) — компьютер рядового пользователя сети, по­лучающий доступ к ресурсам сервера (серверов).

№ 28 Локально Вычислительная Сеть с общей шиной

Топология «общая шина» предполагает использование одного кабеля, к которому подключаются все компьютеры. Информация по нему передается компьютерами поочередно (рис. 7.4).

Рис. 7.4. Топология «общая шина»

    Достоинством такой топологии является, как правило, меньшая протяженность кабеля, а также более высокая надежность чем у «звезды», так как выход из строя отдельной станции не нарушает работоспособности сети в целом. Недостатки состоят в том, что обрыв основного кабеля приводит к неработоспособности всей сети, а также слабая защищенность информации в системе на физическом уровне, так как сообщения, посылаемые одним компьютером другому, в принципе, могут быть приняты и на любом другом компьютере.

№ 29 Кольцевая технология ЛВС

В сети с топологией кольцо все узлы соединены каналами связи в неразрывное кольцо (необязательно окружность), по которому передаются данные. Выход одного ПК соединяется со входом другого ПК. Начав движение из одной точки, данные, в конечном счете, попадают на его начало. Данные в кольце всегда движутся в одном и том же направлении.

Принимающая рабочая станция распознает и получает только адресованное ей сообщение. В сети с топологией типа физическое кольцо используется маркерный доступ, который предоставляет станции право на использование кольца в определенном порядке. Логическая топология данной сети - логическое кольцо. Данную сеть очень легко создавать и настраивать. К основному недостатку сетей топологии кольцо является то, что повреждение линии связи в одном месте или отказ ПК приводит к неработоспособности всей сети. Как правило,  в чистом виде топология “кольцо” не применяется из-за своей ненадёжности, поэтому на практике применяются различные модификации кольцевой топологии.

№ 30 ЛВС с топологией «звезда»

В сети построенной по топологии типа “звезда” каждая рабочая станция подсоединяется кабелем (витой парой) к концентратору или хабу (hub). Концентратор обеспечивает параллельное соединение ПК и, таким образом, все компьютеры, подключенные к сети, могут общаться друг с другом. 

Данные от передающей станции сети передаются через хаб по всем линиям связи всем ПК. Информация поступает на все рабочие станции, но принимается только теми станциями, которым она предназначается. Так как передача сигналов в топологии физическая звезда является широковещательной, т.е. сигналы от ПК распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной. Данная топология применяется в локальных сетях с архитектурой 10Base-T Ethernet. Преимущества сетей топологии звезда:

 легко подключить новый ПК;

 имеется возможность централизованного управления;

 сеть устойчива к неисправностям отдельных ПК и к разрывам соединения отдельных ПК.  Недостатки сетей топологии звезда:

 отказ хаба влияет на работу всей сети;

 большой расход кабеля;

№ 31 Сетевые протоколы

При организации телефонных переговоров по вычислительным сетям необходимо передавать два типа информации: командную и речевую. К командной информации относятся сигналы вызова, разъединения, а также другие служебные сообщения.

Краеугольный камень сети ИНТЕРНЕТ - Internet Protocol (IP). Это протокол сетевого уровня, который обеспечивает маршрутизацию пакетов в сети. Он, однако, не гарантирует надежную доставку пакетов. Таким образом, пакеты могут искажаться, задерживаться, передаваться по различным маршрутам (а значит иметь различное время передачи) и т. д. На основе IP работают протоколы транспортного уровня Transport Control Protocol (TCP) и User Datagram Protocol (UDP).

Основное требование к передаче командной информации - отсутствие ошибок передачи. В результате необходимо использовать достоверный протокол доставки сообщений. Обычно, в качестве такого протокола используется TCP, обеспечивающий гарантированную доставку сообщений. Время доставки сообщений также играет немаловажную роль в этом случае. К сожалению, этот параметр является нестабильным, т. к. при появлении ошибок передачи сообщение передается повторно. Передача повторяется до тех пор пока сообщение не будет доставлено успешно. Таким образом, длительность служебных процедур может бесконтрольно увеличиваться, что недопустимо, например, для этапа установления соединения, а также некоторых процедур связанных с передачей по сети телефонной сигнализации. Открытой проблемой в этой области является создание достоверного механизма передачи, который не только гарантирует безошибочную доставку информации, но также минимизирует время доставки при появлении ошибок передачи.

При передаче речевой информации проблема времени доставки пакетов по сети становиться основной. Это вызвано необходимостью поддерживать общение абонентов в реальном масштабе времени, для чего задержки не должны превышать 250 - 300 мс. В таком режиме использование повторных передач недопустимо, и следовательно, для передачи речевых пакетов приходится использовать недостоверные транспортные протоколы, например, UDP. При обнаружении ошибки передачи факт ошибки фиксируется, но повторной передачи для ее устранения не производится. Пакеты, передаваемые по протоколу UDP могут теряться. В одних случаях это может быть связано со сбоями оборудования. В других - с тем, что "время жизни" пакета истекло, и он был уничтожен на одном из маршрутизаторов. При потерях пакетов повторные передачи также не организуются. В процессе передачи возможны перестановки пакетов в потоке, а также искажения речевых пакетов. Последнее однако происходит крайне редко.

Перед поступлением речевого потока на декодер он должен быть восстановлен. Для этого используется протокол реального времени. В заголовке данного протокола передаются, в частности, временная метка и номер пакета. Эти параметры позволяют определить не только порядок пакетов в потоке, но и момент декодирования каждого пакета, т. е. позволяют восстановить поток. Наиболее распространенный протокол реального времени - Real Time Protocol (RTP), рекомендованный к использованию в стандарте на построение систем реального времени H.323.

Искажения потока пакетов связаны с загруженностью сети. При отсутствии перегрузок искажения минимальны, а часто отсутствуют. Поток речевых пакетов может значительно загружать сеть, особенно, в случае многоканальных систем. Это происходит из-за высокой интенсивности потока (кадры небольшого размера передаются через малые промежутки времени 20 байт/ 30 мс) и большого объема передаваемой служебной информации. Зная размеры заголовков сетевых протоколов (IP - 20 байт, UDP - 8 байт, RTP - 12 байт), легко вычислить общий объем заголовка речевого пакета - 40 байт. Это в 2 раза превышает размер самого пакета. Передача такого объема служебной информации неприемлема, особенно, при построении многоканальных систем. Таким образом, необходимо искать способы уменьшения количества служебной информации, передаваемой по сети. Существует два возможных варианта решения этой проблемы. Первый предполагает создание специальных транспортных протоколов для IP-телефонии, которые могли бы уменьшить заголовок протокола транспортного уровня. Второй вариант - мультеплексирование каналов в многоканальных системах. В этом случае речевые пакеты от разных каналов передаются под одним сетевым заголовком. Такое решение не только уменьшает количество передаваемой служебной информации, но и снижает интенсивность потока.

Основной задачей IP-телефонии является приближение качества услуг к телефонному сервису. С точки зрения используемых сетевых протоколов это означает необходимость создания транспортных механизмов, минимизирующих время доставки по сети, как командной, так и речевой информации.

№ 32 Модель OSI

Эталонная модель OSI, иногда называемая стеком OSI представляет собой 7-уровневую сетевую иерархию (рис. 1) разработанную Международной организацией по стандартам (International Standardization Organization - ISO). Эта модель содержит в себе по сути 2 различных модели:

  • горизонтальную модель на базе протоколов, обеспечивающую механизм взаимодействия программ и процессов на различных машинах

  • вертикальную модель на основе услуг, обеспечиваемых соседними уровнями друг другу на одной машине

В горизонтальной модели двум программам требуется общий протокол для обмена данными. В вертикальной - соседние уровни обмениваются данными с использованием интерфейсов API.

№ 33 Электронный бизнес и электронная коммерция

Internet из глобальной  почтовой и информационно-поисковой системы превращается в инструмент ведения современного бизнеса, основанного на принципах сетевой экономики.  Электронный бизнес (Э-бизнес) - деловая активность, которая использует возможности глобальных информационных сетей для преобразования внутренних и внешних связей компании с целью создания прибыли. Важнейшей составляющей Э-бизнеса является Э-коммерция, которая охватывает не только операции купли-продажи, а и сопровождение процессов создания спроса на продукцию и услуги, автоматизацию административных функций, связанных с онлайновыми продажами и обработкой заказов, а также   с совершенствованием  обмена информацией между партнерами. Электронная коммерция (Э-коммерция) - разновидность бизнес-активности, в которой взаимодействия субъектов бизнеса купли-продажи товаров и услуг (как материальных, так и информационных) осуществляется с помощью глобальной компьютерной сети Internet или  какой-нибудь другой информационной сети. Выделяют несколько классических этапов ведения электронной коммерции: онлайновый маркетинг, оформление заявок, осуществление платежей и информационная поддержка  доставки товаров. Развитие моделей электронной коммерции, внедрение пилотных проектов в этой области, а также разработка общих юридических и правовых основ ведения бизнеса в Internet поддерживается Европейской комиссией  в ESPRIT.  ESPRIT - программа Европейского сообщества,  направленная на ускорение и расширение исследований по использованию информационных технологий (IT). Разделяют такие направления электронной коммерции: - бизнес - бизнес (business-to-business, B2B) - определяет взаимодействие компаний с компаниями в электронной среде; - бизнес - потребитель (business-to-consumer, B2C) - определяет взаимодействие компаний с конечными потребителями в сети; - бизнес - администрация (business-to-administration, B2A) - определяет взаимодействие компаний с административными органами; - потребитель- администрация (consumer-to-administration C2A) - определяет взаимодействие потребителей с администрацией. В соответствии со статистическими исследованиями в сети, направление B2B занимает первое месте (70% от общего количества договоров, которые заключаются в Internet). Начиная с больших корпораций, таких, как  Cisco Systems, стремление увеличить оборот денег через глобальную сеть в секторе бизнес-бизнес постоянно распространяется и на мелкие фирмы, которые хотят расширить свою деятельность с меньшими затратами времени и материальными ресурсами. Однако обычным потребителям больше известны компании, которые торгуют в Internet товарами и услугами для конечных потребителей, то есть относятся к направлению B2C. Примером может служить Amazon.com - известнейший в мире электронный магазин, который торгует книгами, компактами и другой продукцией.  Перспективными считаются направления B2A и C2A. Государство является значительным поставщиком услуг для граждан и предприятий, которые платят налоги за комплекс определенных услуг в сфере безопасности и общественного порядка, образования, охраны здоровья и т.д. Все большее количество  местных и центральных органов власти в разных странах предоставляет услуги гражданам через Internet. Наиболее известным проектом в мире в этой области есть государственный портал Сингапура Citizen Centre, на котором осуществляются практически все общения граждан с властью. В материалах Европейской комиссии в ESPRIT  (http://www.cordis.lu/esprit/home.html)  приводятся такие модели электронной коммерции: - электронный магазин; - электронный справочник-каталог; - электронный онлайновый аукцион; - электронный торговый центр; - виртуальное сообщество; - виртуальный центр разработки; - информационный брокер; - провайдер бизнес - операций; - интегратор бизнес - операций и т.д. Электронный магазин - это специализированный Web-сайт, который принадлежит фирме - производителю, торговой фирме  и т.д. и предназначенный для продвижения товаров на рынке, для увеличения объемов продажи и привлечения новых покупателей. На таких сайтах имеется возможность выбрать товары, оформить заявки и осуществить оплату через сеть, оформить документы в режиме on-line для осуществления оплаты обычным способом  и отследить доставку. Электронный справочник-каталог - специализированный Web-сайт для проведения тендеров среди поставщиков. Web-сайт представляет собой справочник-каталог, с помощью которого клиент может выбрать поставщиков товаров для проведения переговоров с ними. Выбор осуществляется исходя из характеристик товаров, цен, условий поставки, номенклатуры или каких-нибудь других специфических условий. Электронные справочники-каталоги используются компаниями с целью упрощения процедуры участия в тендерах, для продвижения своей торговой марки и снижения затрат на маркетинг. Электронный онлайновый аукцион - один из перспективнейших секторов электронной коммерции: программно-информационная тематическая база со средствами поиска, в которой содержатся описания товаров, допущенных к торгам.  Электронный аукцион аналогичен процедуре торгов по лотам на обычном аукционе. Хозяин такой Web-системы зарабатывает на процентах от транзакций, а также на продажах программного обеспечения для участия в торгах. Удачный пример такого Internet-аукциона  www.e-bay.com. Электронный торговый центр - Web-сайт, который содержит множество электронных магазинов и каталогов, интегрированных на хостинге (иногда под известной маркой), которые совместно выполняют определенные функции. Другие модели электронной коммерции (по классификации Европейской комиссии ESPRIT) связаны с интенсификацией обмена информацией и процессами совместного производства. Преимущество электронной коммерции по сравнению с традиционными видами деловой активности является ощутимым. Использование новых электронных форм коммуникации значительно снижает затраты на организацию и поддержку всей инфраструктуры бизнеса. Фундаментальное переосмысливание  и радикальное изменение бизнес-процессов может заметно улучшить такие важнейшие характеристики, как затраты, качество, сервис и скорость обслуживания.

№ 34 Понятие и классификация информационных систем

В широком смысле информационная система есть совокупность технического, программного и организационного обеспечения, а также персонала, предназначенная для того, чтобы своевременно обеспечивать надлежащих людей надлежащей информацией[1].

Также в достаточно широком смысле[2] трактует понятие информационной системы Федеральный закон РФ от 27 июля 2006 года № 149-ФЗ «Об информации, информационных технологиях и о защите информации»: «информационная система — совокупность содержащейся в базах данных информации и обеспечивающих ее обработку информационных технологий и технических средств»[3].

Одно из наиболее широких определений ИС дал М.Р. Когаловский: «информационной системой называется комплекс, включающий вычислительное и коммуникационное оборудование, программное обеспечение, лингвистические средства и информационные ресурсы, а также системный персонал и обеспечивающий поддержку динамической информационной модели некоторой части реального мира для удовлетворения информационных потребностей пользователей»[4].

В узком смысле информационной системой называют только подмножество компонентов ИС в широком смысле, включающее базы данных, СУБД и специализированныеприкладные программы. ИС в узком смысле рассматривают как программно-аппаратную систему, предназначенную для автоматизации целенаправленной деятельности конечных пользователей, обеспечивающую, в соответствии с заложенной в нее логикой обработки, возможность получения, модификации и хранения информации[5].

В любом случае основной задачей ИС является удовлетворение конкретных информационных потребностей в рамках конкретной предметной области. Современные ИС де-факто немыслимы без использования баз данных и СУБД, поэтому термин «информационная система» на практике сливается по смыслу с термином «система баз данных».

Классификации информационных систем [править]Классификация по архитектуре

По степени распределённости отличают:

  • настольные (desktop), или локальные ИС, в которых все компоненты (БДСУБД, клиентские приложения) находятся на одном компьютере;

  • распределённые (distributed) ИС, в которых компоненты распределены по нескольким компьютерам.

Распределённые ИС, в свою очередь, разделяют на:

  • файл-серверные ИС (ИС с архитектурой «файл-сервер»);

  • клиент-серверные ИС (ИС с архитектурой «клиент-сервер»).

В файл-серверных ИС база данных находится на файловом сервере, а СУБД и клиентские приложения находятся на рабочих станциях.

В клиент-серверных ИС база данных и СУБД находятся на сервере, а на рабочих станциях находятся клиентские приложения.

В свою очередь, клиент-серверные ИС разделяют на двухзвенные и многозвенные.

В двухзвенных (англ. two-tier) ИС всего два типа «звеньев»: сервер баз данных, на котором находятся БД и СУБД (back-end), и рабочие станции, на которых находятся клиентские приложения (front-end). Клиентские приложения обращаются к СУБД напрямую.

В многозвенных (англ. multi-tier) ИС добавляются промежуточные «звенья»: серверы приложений (application servers). Пользовательские клиентские приложения не обращаются к СУБД напрямую, они взаимодействуют с промежуточными звеньями. Типичный пример применения многозвенности — современные веб-приложения, использующие базы данных. В таких приложениях помимо звена СУБД и клиентского звена, выполняющегося в веб-браузере, имеется как минимум одно промежуточное звено — веб-сервер с соответствующим серверным ПО.

[Править]Классификация по степени автоматизации

По степени автоматизации ИС делятся на:

  • автоматизированные: информационные системы, в которых автоматизация может быть неполной (то есть требуется постоянное вмешательство персонала);

  • автоматические: информационные системы, в которых автоматизация является полной, то есть вмешательство персонала не требуется или требуется только эпизодически.

«Ручные ИС» («без компьютера») существовать не могут, поскольку существующие определения предписывают обязательное наличие в составе ИС аппаратно-программных средств. Вследствие этого понятия «автоматизированная информационная система», «компьютерная информационная система» и просто «информационная система» являются синонимами[4].

[Править]Классификация по характеру обработки данных

По характеру обработки данных ИС делятся на:

  • информационно-справочные, или информационно-поисковые ИС, в которых нет сложных алгоритмов обработки данных, а целью системы является поиск и выдача информации в удобном виде;

  • ИС обработки данных, или решающие ИС, в которых данные подвергаются обработке по сложным алгоритмам. К таким системам в первую очередь относятавтоматизированные системы управления и системы поддержки принятия решений.

[Править]Классификация по сфере применения

Поскольку ИС создаются для удовлетворения информационных потребностей в рамках конкретной предметной области, то каждой предметной области (сфере применения) соответствует свой тип ИС. Перечислять все эти типы не имеет смысла, так как количество предметных областей велико, но можно указать в качестве примера следующие типы ИС:

  • Экономическая информационная система — информационная система, предназначенная для выполнения функций управления на предприятии.

  • Медицинская информационная система — информационная система, предназначенная для использования в лечебном или лечебно-профилактическом учреждении.

  • Географическая информационная система — информационная система, обеспечивающая сбор, хранение, обработку, доступ, отображение и распространение пространственно-координированных данных (пространственных данных).