Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 12 Физические основы ядерных реакторов.doc
Скачиваний:
4
Добавлен:
17.09.2019
Размер:
623.62 Кб
Скачать

Существующие проекты

Существующие проекты представляют из себя гомогенные реакторы (в том числе, на быстрых нейтронах), работающие на смеси расплавов фторидов Li — лития, Be — бериллия, Zr — циркония, U — урана.

Достоинства

  1. Низкое давление в корпусе реактора (0,1 атм) — позволяет использовать очень дешёвый корпус, при этом исключается целый класс аварий с разрывом корпуса и трубопроводов 1-го контура.

  2. Высокие температуры 1-го контура — выше 700 °C, (а в реакторах сверхвысокой температуры выше 1400) и, как следствие, высокий термодинамический КПД (до 44 % для MSBR-1000), что позволяет использовать обычные турбины от тепловых электростанций.

  3. Возможно организовать непрерывную замену горючего, без остановки реактора - вывод продуктов деления из 1-го контура и его подпитку свежим топливом.

  4. Меньший радиоактивный износ материалов конструкции по сравнению с водо-водяными реакторами.

  5. Высокая топливная эффективность.

  6. Возможность построить реактор-размножитель или конвертер.

  7. Возможность использования ториевых топливных циклов, что значительно расширяет и удешевляет топливный цикл.

  8. Фториды металлов, в отличие от жидкого натрия, практически не взаимодействуют с водой и не горят, что исключает целый класс аварий, возможных для жидкометалических реакторов с натриевым теплоносителем.

  9. Возможность вывода ксенона (для исключения отравления реактора) простой продувкой теплоносителя гелием в ГЦН. Как следствие — возможность работать в режимах с постоянным изменением мощности.

Недостатки

  1. Необходимость организовывать переработку топлива на АЭС.

  2. Более высокая коррозия от расплава солей.

  3. Более высокие дозовые затраты при проведении ремонта 1-го контура по сравнению с ВВЭР

  4. Низкий коэффициент воспроизводства (КВ ~ 1,06 для MSBR-1000) по сравнению с жидкометалическими реакторами с натриевым теплоносителем (КВ ~ 1,6 для БН-600, БН-800)

  5. Значительно большие (в 2—3 раза) по сравнению с водо-водяными реакторами выбросы трития, с которыми можно бороться подбором конструкционных материалов трубопроводов 1-го контура.

  6. Отсутствие конструкционных материалов.

Проекты жидкосолевых реакторов

  • Aircraft Reactor Experiment, ARE, 3 МВт, Окриджская Национальная Лаборатория (ORNL) США — построен 1954 г., работал 9 дней.

  • Molten-Salt Reactor Experiment, MSRE, 8 МВт, Окриджская Национальная Лаборатория (ORNL) США — уран-ториевый реактор-размножитель на тепловых нейтронах с графитовым замедлителем и отражателем, работал 25 000 часов.

  • Molthen-Salt Breeder Reactor, MSBR-1000, 1000 МВт, Окриджская Национальная Лаборатория (ORNL) США — уран-ториевый реактор-размножитель на тепловых нейтронах с графитовым замедлителем и отражателем. Развитие MSRE — проект коммерческого реактора. Экономическая эффективность примерно соответствует водо-водяным реакторам. Может работать как в режиме конвертера, так и реактора-размножителя.

  • Denatured Molten-Salt Reactor (with once-through fueling), DMSR-1000, Окриджская Национальная Лаборатория. Проект не был осуществлён[1].

Литература

  • В.Л .Блинкин, В.М. Новиков Жидкосолевые ядерные реакторы. — М.: Атомиздат, 1978.

  • Новиков В.М., Игнатьев В.В., Федулов В.И., Чередников В.Н. Жидкосолевые ЯЭУ: перспективы и проблемы, Энергоатомиздат, М., 1990

По роду замедлителя

  • С (графит, см. Графито-газовый реактор, Графито-водный реактор)

  • H2O (вода, см. Легководный реактор, Водо-водяной реактор, ВВЭР)

  • D2O (тяжёлая вода, см. Тяжеловодный ядерный реактор, CANDU)

  • Be, BeO

  • Гидриды металлов

  • Без замедлителя (см. Реактор на быстрых нейтронах)

По конструкции

  • Корпусные реакторы

  • Канальные реакторы

По способу генерации пара

  • Реактор с внешним парогенератором (См. Водо-водяной реактор, ВВЭР)

  • Кипящий реактор

Классификация МАГАТЭ

  • PWR (pressurized water reactors) — водо-водяной реактор (реактор с водой под давлением);

  • BWR (boiling water reactor) — кипящий реактор;

  • FBR (fast breeder reactor) — реактор-размножитель на быстрых нейтронах;

  • GCR (gas-cooled reactor) — газоохлаждаемый реактор;

  • LWGR (light water graphite reactor) — графито-водный реактор

  • PHWR (pressurised heavy water reactor) — тяжеловодный реактор

Наиболее распространёнными в мире являются водо-водяные (около 62 %) и кипящие (20 %) реакторы.