Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
lektsii_po_fermentam.doc
Скачиваний:
81
Добавлен:
17.09.2019
Размер:
7.43 Mб
Скачать

1.3.4.Кинетика ферментативных реакций.

Браун А, и Анри В. впервые высказали мысль о том, что в основе ферментативной реакции лежит обратимое взаимодействие S и Е с образованием комплекса, который позже распадается с образованием продуктов и регенерацией исходного фермента.

Ферментативную реакцию в простом случае одностороннего превращения одного субстрата можно выразить общим уравнением:

В соответствии с этой схемой [S] обратимо реагирует с [E] с образованием ФСК [ES]. Этот комплекс называют комплексом Михаэлиса.

Допустим, что ФСК все время находится в равновесии с исходными веществами. Другими словами равновесие на первой стадии устанавливается быстро и не нарушается высвобождением фермента от ES в направление k +2

Скорость ферментативных превращений субстрата равна скорости образования продукта (2-я стадия), если [S] >> [E]0, что бывает чаще, где [E]0 – концентрация фермента в начальный момент и равен

Это и есть уравнение Михаэлиса-Мэнтен.

KS – субстратная константа = 1/KP (KP- константа равновесия).

Однако в этом уравнении отсутствует константа образования продукта k+2. Холдейн и Бригс вывели уравнение более полно описывающее зависимость скорости от концентрации субстрата.

Исходя из уравнения ферментативной реакции мы можем написать уравнение скоростей образования и распада ФСК.

При достаточно быстром протекании стадии образование ФСК и его превращения в продукт может быть реализовано состояние, когда концентрация [ЕS] меняется во времени медленнее, чем концентрация [S] и [Е]. Это случай возможен при [E]0 << [S].

Экспериментально доказано, что в реакциях при оптимальных условиях и при [S] >> [E]0 быстро наступает стационарное течение процесса, при котором распад [ES] по направлению k-1 и k+2 уравновешивается его образованием в направлении k+1. Тогда для стационарного состояния можно написать

k-1 [ES]+k+2 [ES] = k+1 [E][S]

или (k -1 +k +2) [ES] = k +1 [E] [S] (11)

Обозначим общую концентрацию фермента через [E]0, тогда

[E]0 = [E]+[ES] и отсюда [E]=[E]0-[ES](12).

Подставим [E] из уравнения 12 в уравнение 11 и получим:

(k –1 + k +2) [ES] = k +1 ([E]0 – [ES]) [S] (13). Отсюда найдем [ES].

(14)

разделим числитель и знаменатель на k +1 получим выражение:

(15)

Обозначив (15)

Получим (16)

Скорость может быть выражена (17)

Подставим значение [ES] из уравнения 16 в уравнение 17 и получим уравнение Холдейна-Бригс (ХБ), более известного как уравнение Михаэлиса-Ментен (ММ).

Получим (18)

Рассмотрим внимательно выражение: KM – константа Михаэлиса, одна из важнейших констант в кинетике ферментативных реакций.

Если k–1 >> k+2, т.е. если обратный распад ФСК на исходные вещества происходит гораздо быстрее его превращение в продукт, то можно пренебречь k+2 и уравнение ХБ. прейдет в уравнение ММ. Это условие совпадает с предположением о существовании равновесия на первой стадии в ходе всего процесса. Т.е. принцип стационарности позволяет получить более общую форму уравнения М.М., уравнение Х.Б.

Уравнение Х.Б. в целом хорошо описывает экспериментальные данные по кинетике ферментативных реакций. Чаще всего оно принимается в дифференциальной форме, связывающий начальную скорость превращения субстрата с его начальной концентрацией при заданном количестве внесенного фермента: (19)

Это объясняется тем, что в ходе реакции могут появиться некоторые дополнительные эффекты – торможение продуктами, инактивация ферментов и т.д., которые искажают ход временной зависимости по сравнению с уравнениями М.М., Х.Б.

Взаимосвязь начальной скорости реакции [v]0 и начальной концентрации субстрата [s]0 по уравнению Х.Б. представляет собой функцию имеющую свои характерные особенности (Рис.1.15).

При достаточно малых концентрациях субстрата, когда KM >> [s0] уравнение переходит в линейную форму (20) , а при больших [s]0, если [s]0 >> KM кривая стремится к предельному значению k+2[E]0 , которую обозначают через Vm. Тогда Vm = k+2[E]0 (21). Если V0=1/2 VM, то [s]0=KM. В силу изложенного уравнения Х.Б. часто представляют в форме, удобной для практической обработки экспериментальных данных:

(21)

Константы этого уравнения характеризуют активность фермента и его сродство к данному субстрату, поэтому целью кинетического исследования является прежде всего нахождение значений VM и КM . наиболее простое такое исследование выполняется в виде серии экспериментов при постоянной концентрации фермента [E]0 и изменяющихся начальных концентрациях субстрата [s]0. В ходе каждого опыта изучается лишь начальный участок кинетической кривой для определения начальной скорости реакции V0 имея набор значений V0 при известных [s]0 легко найти кинетические константы.

Для этой цели удобны уравнения и графики Лайнуивера – Берка (Рис.1.16). Общим свойством дробных рациональных функций, имеющих в числители произведения, а в знаменателе сумму некоторых величин является их способностью переходить в линейную форму при обращении левой и правой части равенства: (22)

при 1/s0=0 имеем т.е. прямая пересекает ось ординат в точке 1/VM, а при 1/v0=0 1/s0=- 1/KM . Таким образом, при продолжение прямой в отрицательную область до пересечения с осью абсцисс она отсекает на оси отрезок =- 1/КM

Недостатком координат Лайнуивера-Берка (ЛБ). является экстраполяция прямой влево до пересечения с осями ординат, что приводит к ошибкам.

Одно из удобных решений исключающих недостаток графиков Л.Б. заключается в использовании координат Эди-Хофсти (Рис.1.17) и описываемых уравнением Эди-Хофсти (24)

В координатах с отрицательным углом наклона отсекается на осях ординат отрезок, равный VM, а на оси абсцисс отрезок равный VM/KM.

Недостаток такого метода обработка является возможность возрастания ошибок при делении, 2-х величин V0 и s0 каждая из которого измерена с ошибкой.

Определение VM=k2[E]0 позволяет по известной мольной концентрации катализатора найти k +2 – константу скорости распада ES. Константа Михаэлиса определяет стационарную концентрацию ФСК (25). Однако с помощью КМ в общем случае нельзя найти ни отдельные элементарные константы k -1 и k+1 ни их отношение – субстратную константу КS . для определения К1 нужно изучать кинетику нестационарной реакции на самых первых стадиях, что для быстрых каталитических реакций представляет большие экспериментальные трудности и часто связано с диффузионными ограничениями. Поэтому обычно величину КМ рассматривают как некоторую эффективную величину, представляющую совокупность элементарных констант. Естественно, что при k +2 << k -1 стационарная концентрация комплекса E-S мало отличается от равновесной, а КМ равно субстратной константа КS константе диссоциации комплекса ES: КМS . Для многих ферментативных реакций раздельное определение КS и KM показало, что эти величины отличаются мало, исключение составляет каталаза, пероксидаза. Как обычно KM лежит в пределах 1-10-8м/л, но чаще встречаются значения 10-4 M/л.

При уверенности отсутствия посторонних факторов и располагая математическим выражением для скорости ферментативной реакции, (уравнение Х.Б. М.М.) мы можем определить изменение концентрации реагентов во времени путем интегрирования уравнения методом разделения переменных:

(26)

интегрирование в пределах от 0 до t и соответственно от S0 до S приводит к уравнению Уоелкера-Шмидта (Рис.1.18). (27)

Надо иметь виду, что на практике это уравнение проще использовать для расчета времени t, необходимого для достижения определенных концентраций субстрата, а не наоборот.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]