Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
последняя тема.docx
Скачиваний:
26
Добавлен:
13.09.2019
Размер:
223.66 Кб
Скачать

 Электрический ток в вакууме. Эмиссионные явления. Работа выхода электрона из металла.

Для получения электрического тока в вакууме необходимо создать в эвакуированном объеме направленный поток заряженных частиц. Для этого катод вакуумного устройства подвергают одному из видов воздействия, перечисленных в таблице 1, вследствие чего возникает эмиссия(испускание) свободных электронов. При приложении электрического поля между катодом и анодом электроны устремляются к положительно заряженному аноду – возникает электрический ток.

Таблица 1. Основные виды эмиссии электронов.

Вид эмиссии

Условия возникновения

Ионно-электронная

Бомбардировка катода

положительными ионами.

Вторичная электронная

Бомбардировка анода

электронами.

Термоэлектронная

Нагрев катода.

Фотоэлектронная

Воздействие на катод

электромагнитным излучением.

Во многих вакуумных электронных устройствах и приборах используют явление термоэлектронной эмиссии. Термоэлектронная эмиссия - это испускание электронов нагретыми телами (обычно металлами) в вакуум или другую среду.

Для того, чтобы покинуть поверхность твердого или жидкого тела электрону необходимо преодолеть потенциальный барьер, то есть совершить работу. Минимальная энергия, которую надо затратить, чтобы удалить электрон из твердого или жидкого вещества в вакуум (в состояние с равной нулю кинетической энергией), называется работой выхода электрона.

С лучайное удаление электрона из металла (вследствие тепловых флуктуаций энергии электрона) создает в том месте, которое покинул электрон, избыточный положительный заряд ионов кристаллической решетки (рис.1). Возникающие при этом силы «электростатического изображения» заставляют электрон (скорость которого не очень велика) вернуться обратно в металл. Таким образом, отдельные электроны все время покидают поверхность металла и возвращаются обратно в него. В результате поверхность металла оказывается окруженной тонким (~10-9м) облаком отрицательно заряженных электронов. Это облако совместно с положительными зарядами ионов приповерхностного слоя металла образует двойной электрический слой. Силы, действующие в таком слое на электрон, направлены внутрь металла, то есть препятствуют удалению электрона с поверхности металла.

Рис.1. Двойной электрический слой у поверхности металла.

Типичные значения работы выхода электрона из металла (таблица 4) Авых ~ 2-5 эВ (1 эВ = 1,6∙10-19 Дж).

Таблица 2. Работа выхода электрона.

Металл

Работа выхода, эВ

Cs

1,9

Na

2,3

Ag

4,7

W

4,5

W + Cs

1,6

Pt

5,3

Pt + Cs

1,4

Минимальными значениями Авых обладают щелочные металлы. Работа выхода очень чувствительна к состоянию поверхности металла. Так, например, нанесение на поверхность вольфрама тонкой пленки оксида цезия снижает работу выхода с 4,5 эВ до 1,6 эВ (см. таблицу 2). Работа выхода электрона из металла не зависит от температуры.

Электрический ток в газах

Космические лучи и слабая естественная радиоактивность стенок емкости, в которой находится газ, всегда кое-что ионизируют его. Поэтому слабенькие электрические токи в газах , предопределенные механическими перемещениями заряженных ионов между электродами, можно зафиксировать при обычных условиях в любом газе.

В результате процессов рекомбинации (взаимной нейтрализации зарядов разного знака) их концентрация в слабых электрических полях всегда является меньшей от стационарного состояния (или состоянию насыщения), в котором все, или почти все ионы достигают электродов еще к рекомбинации. Типичный вид зависимости тока в газонаполненном диоде (двухэлектродной лампе)

Лишь в слабых полях (заметно меньших от поля в точке А) наблюдается приблизительно линейная зависимость электрического тока в газах от напряжения, то есть выполнение закона Ома. За пределами линейного участка закон Ома, не выполняется.

Процессы ионизации и рекомбинации.

Газы становятся проводниками лишь тогда, когда они каким-то образом ионизированы. Процесс ионизации газов заключается в том, что под действием каких-либо причин от атома отрывается один или несколько электронов. В результате этого вместо нейтрального атома возникают положительный ион и электрон.

Распад молекул на ионы и электроны называется ионизацией газа.

Часть образовавшихся электронов может быть при этом захвачена другими нейтральными атомами, и тогда появляются отрицательно заряженные ионы.

Таким образом, в ионизованном газе имеются носители зарядов трех сортов: электроны, положительные ионы и отрицательные.

Отрыв электрона от атома требует затрат определенной энергии — энергии ионизации Wi. Энергия ионизации зависит от химической природы газа и энергетического состояния электрона в атоме. Так, для отрыва первого электрона от атома азота затрачивается энергия 14,5 эВ, а для отрыва второго электрона — 29,5 эВ, для отрыва третьего — 47,4 эВ.

Факторы, вызывающие ионизацию газа называются ионизаторами.

Различают три вида ионизации: термоионизацию, фотоионизацию и ударную ионизацию.

  • Термоионизация происходит в результате столкновения атомов или молекул газа при высокой температуре, если кинетическая энергия относительного движения сталкивающихся частиц превышает энергию связи электрона в атоме.

  • Фотоионизация происходит под действием электромагнитного излучения (ультрафиолетового, рентгеновского или γ-излучения), когда энергия, необходимая для отрыва электрона от атома, передается ему квантом излучения.

  • Ионизация электронным ударом (или ударная ионизация) — это образование положительно заряженных ионов в результате столкновений атомов или молекул с быстрыми, обладающими большой кинетической энергией, электронами.

Процесс ионизации газа всегда сопровождается противоположным процессом восстановления нейтральных молекул из разноименно заряженных ионов вследствие их электрического притяжения. Это явление называется рекомбинацией. При рекомбинации выделяется энергия, равная энергии, затраченной на ионизацию. Это может вызвать, например, свечение газа.