Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-26.doc
Скачиваний:
42
Добавлен:
11.09.2019
Размер:
1.56 Mб
Скачать

Вопрос 7 трансформаторы тока и их погрешности

П ринцип действия. Трансформаторы тока (ТТ) являются вспомогательными элементами, с помощью которых ИО РЗ получают информацию о значении, фазе и частоте тока защищаемого объекта. От достоверности получаемой информации зависит правильность действия устройств РЗ. Поэтому основным требованием к ТТ, питающим устройства РЗ, является точность трансформации контролируемого тока с погрешностями, не превышающими допустимых значений. Принцип устройства ТТ поясняют схемы, приведенные на рис.3.1. Заметим, что один из вторичных зажимов ТТ должен обязательно заземляться по условиям техники безопасности.

Т рансформатор тока (рис.3.1, а) состоит из первичной обмотки w1, включаемой последовательно в цепь контролируемого тока, вторичной обмотки w2, замкнутой на сопротивление нагрузки Zн, состоящее из последовательно включенных элементов РЗ или измерительных приборов, и стального магнитопровода 1, с помощью которого осуществляется магнитная связь между обмотками. Первичный ток I1 проходящий по виткам первичной обмотки wl, и ток I2, индуцированный во вторичной обмотке w2, создают магнитодвижущие силы (МДС) I1wl и I2w2, которые вызывают соответственно магнитные потоки Ф1 и Ф2, замыкающиеся по стальному магнитопроводу 1. Намагничивающие силы и создаваемые ими магнитные потоки с учетом их положительных направлений, показанных на рис.3.1, геометрически вычитаются, образуя результирующую МДС Iнамw1 и результирующий магнитный поток трансформатора Фт [41]:

(3.1)

(3.1а)

Поток Фт, называемый рабочим или основным, пронизывает обе обмотки и наводит во вторичной обмотке ЭДС Е2, которая создает в замкнутой цепи вторичной обмотки ток I2. Поток Фт создается МДС Iнамw1 и, следовательно, током Iнам. Последний является частью тока I1 и называется намагничивающим током. Если Iнам = 0, выражение (3.1) примет вид

Ilwl = I2w2,

откуда

(3.2)

где коэффициент трансформации, называемый витковым, в отличие от номинального1. При отсутствии намагничивающего тока вторичный ток I2 (расчетный ток) равен первичному току I1 поделенному на коэффициент трансформации ТТ, равный КIв. В этом случае первичный ток полностью трансформируется во вторичную обмотку w2, и ТТ работает идеально без потерь и погрешностей.

Обозначение выводов обмоток трансформаторов тока. При изготовлении ТТ выводы первичной и вторичной обмоток условно обозначаются (маркируются) так, чтобы при помощи этих обозначений можно было определять направление вторичного тока по направлению первичного. Выводы первичной обмотки могут обозначаться произвольно: один принимается за начало Н, а второй – за конец обмотки К (рис.3.2, а). Маркировка же выводов вторичной обмотки выполняется по следующему правилу. При прохождении тока в первичной обмотке от начала Н к концу К за начало вторичной обмотки Н принимается тот ее вывод, из которого в этот момент ток вытекает в цепь нагрузки (рис.3.2, а). Соответственно второй вывод вторичной обмотки принимается за конец обмотки К. При обозначении выводов вторичной обмотки по указанному выше правилу ток в обмотке реле, включенного во вторичную цепь ТТ, имеет такое же направление, как и в случае включения реле непосредственно в первичную цепь (рис.3.2, а). З аводы-изготовители обозначают начало и конец первичной обмотки трансформаторов Л1 и Л2, а начало и конец вторичной обмотки И1 и И2 (рис.3.2, б, в).

На рис.3.2, г показана векторная диаграмма первичного и вторичного токов при принятых на рис.3.2, а их условных положительных направлениях.

На рис.3.2, д показано, как изменяется направление тока во вторичной обмотке и маркировка выводов вторичной обмотки при различном выполнении намотки вторичной обмотки. Направления потока Ф1 и вторичного тока определяются по правилу буравчика.

Причины погрешности. В реальном ТТ Iнам 0, как это следует из (3.1). Ток IHAM является обязательной частью первичного тока I1, он образует МДС, создающую поток Ф, который и осуществляет трансформацию. Из выражения (3.1) вторичный ток реального ТТ

(3.3)

где kI = w2/wlвитковый коэффициент трансформации.

Из выражения (3.3) следует, что действительный вторичный ток I2 отличается от расчетного (идеального) значения I1/kI, определенного по формуле (3.2), на значение Iнам/kI, которое вносит искажение в абсолютное значение и фазу вторичного тока. Таким образом, причиной, вызывающей погрешность в работе ТТ, является ток намагничивания Iнам

Векторная диаграмма и виды погрешностей ТТ. Искажающее влияние тока намагничивания на вторичный ток ТТ показано на векторной диаграмме рис.3.3, в основу которой положена схема замещения (см. рис.3.1, б).

В схеме замещения магнитная связь между первичной и вторичной обмотками ТТ заменена электрической, а все величины первичной стороны приведены к виткам вторичной обмотки: I'1= I1/KI и I'нам= Iнам/kI.

За исходный при построении диаграммы принят вектор вторичного тока I2, а затем строятся векторы напряжения на выходе вторичной обмотки: U2 и Е2.

Вектор вторичного напряжения U2 равен падению напряжения в сопротивлении нагрузки

Zн = Rн+ jXн, т. е. U2 = I2(Rн+ jXн). Он опережает I2 на угол φн. Вектор вторичной ЭДС ТТ

1 Под номинальным коэффициентом трансформации подразумевается отношение номинального первичного тока ТТ ко вторичному: . В заводских материалах дается номинальный коэффициент трансформации. При .

Е2 равен геометрической сумме напряжения U2 и падения напряжения в сопротивлении вторичной обмотки Z2 = R2 + jX2, т. е. Е2 = U2 + I2(R2 + jX2), или, выразив U2 как падение напряжения в Zн, получим

(3.4)

ЭДС Е2 опережает I2 на угол α.

С учетом условно принятых положительных направлений токов и ЭДС в схеме замещения результирующий магнитный поток ТТ Фт показан отстающим от создаваемой им ЭДС Е2 на 90°. Намагничивающий ток ТТ I'нам, создающий поток Фт, опережает последний на угол γ*, обусловленный активными потерями от нагрева стали сердечника ТТ. Приведенный первичный ток I'1 находится как геометрическая сумма векторов вторичного тока I2 и тока намагничивания I'нам.

Векторная диаграмма наглядно показывает, что за счет тока I'нам вторичный ток I2 получается меньше приведенного первичного тока I'1 = I1/KI на ΔI и сдвинут относительно него по фазе на угол δ.

При рассмотрении работы РЗ учитываются три вида погрешностей ТТ: токовая fi, полная ε, угловая δ.

Токовая погрешность определяется величиной ΔI (отрезок AD на рис.3.3). Она равна арифметической разности I'1  I2 и показывает, насколько действительный ток I2 меньше расчетного тока I2=I1/KI.

У гловая погрешность характеризуется углом δ, показывающим, насколько действительный ток I2 сдвинут по фазе относительно приведенного первичного тока I'1 (т. е. идеального вторичного тока I2 и реального первичного тока).

Полная погрешность ε определяется модулем (абсолютным значением) вектора I'нам (отрезок АС на рис.3.3). Эта погрешность равна геометрической разности действующих значений векторов I'1, приведенной ко вторичной стороне, и I: |I'нам|=|I'1 I|.

Из рассмотрения треугольника ABC (рис.3.3) следует, что полная погрешность (ε = Iнам) определяет и характеризует как погрешность по току fi = ΔI, так и погрешность по углу δ. Угол δ очень мал, поэтому можно считать, что ΔI равен отрезку АВ, а угол δ, измеряемый в радианах длиной дуги DC, приблизительно равен отрезку ВС.

Это означает, что ε > fi. С увеличением α, зависящего от угла нагрузки φн (угла между током I2 и напряжением U2), ΔI растет, а угол δ уменьшается. При α + γ = 90° вектор I2 совпадает по фазе с вектором , и тогда погрешность по току ΔI достигает максимального значения. При этом fi, будет равна ε, угловая же погрешность становится минимальной (δ = 0).

Погрешность по току ΔI (fi,) и полная погрешность ε =|Iнам| выражаются в относительных единицах или процентах как отношение действующих значений этих погрешностей к действующему значению приведенного первичного тока.

Относительная токовая погрешность

(3.5)

Относительная полная погрешность

(3.6)

* Ток I'нам имеет две составляющих: I'a нам, которая определяет потери энергии на нагрев магнитопровода вихревыми токами, и I'р нам, которая осуществляет намагничивание сердечника, т. е. создает поток Фт. Составляющая I'a нам << I'р нам, поэтому углом γ можно пренебречь и считать, что вектор I'нам совпадает по фазе с Фт и равен I'р нам.

Если вторичный ток несинусоидален, то ток намагничивания выражается как среднее квадратичное значение разности мгновенных значений реального и расчетного токов i2:

Тогда

(3.7)

Здесь КI – номинальный коэффициент трансформации ТТ.

Погрешность по углу выражается в градусах и минутах, она считается положительной, если I2 опережает I1, как показано на рис.3.3. Относительные погрешности ε, , fi и δ увеличиваются с увеличением тока намагничивания Iнам.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]