Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-26.doc
Скачиваний:
40
Добавлен:
11.09.2019
Размер:
1.56 Mб
Скачать

Вопрос 25 . Принцип действия продольной дифференциальной защиты

Для отключения КЗ в пределах всей защищаемой ЛЭП без выдержки времени служат дифференциальные РЗ, которые подразделяются на продольные и поперечные.

Принцип действия продольных дифференциальных РЗ основан на сравнении значения и фазы токов в начале и конце защищаемой ЛЭП. Как видно из рис.10.1, а, при внешнем КЗ (в точке К) токи II и III на концах ЛЭП АВ направлены в одну сторону и равны по значению, а при КЗ на защищаемой ЛЭП (рис.10.1, б) они направлены в разные стороны и, как правило, не равны друг другу. Следовательно, сопоставляя значение и фазу токов II и III, можно определять, где возникло КЗ – на защищаемой ЛЭП или за ее пределами. Такое сравнение токов по значению и фазе осуществляется в реагирующем органе (реле тока). Для этой цели вторичные обмотки ТТ TAI и ТАII, установленных по концам защищаемой ЛЭП и имеющих одинаковые коэффициенты трансформации, при помощи соединительного кабеля подключаются к дифференциальному реле КА (реагирующему органу) таким образом, чтобы при внешнем КЗ ток в реле был равен разности токов IIb и IIIb, а при КЗ на ЛЭП их сумме IIb + IIIb. В нашей стране применяется схема дифференциальной РЗ с циркулирующими токами, основанная на сравнении вторичных токов (рис.10.1). Реагирующий орган – токовое реле КА включается параллельно вторичным обмоткам ТТ. При таком включении в случае внешнего КЗ токи IIb и IIIb замыкаются через обмотку КА и проходят по ней в противоположном направлении (рис.10.1, а). Ток в реле равен разности токов:

(10.1)

При равенстве коэффициентов трансформации и отсутствии погрешностей в работе ТТ вторичные токи IIb = IIIb, поступающие в обмотку реле, балансируются, ток Iр = 0, и реле не срабатывает.

Таким образом, по принципу действия дифференциальная РЗ не реагирует на внешние КЗ, токи нагрузки и качания, поэтому она выполняется без выдержки времени и не должна отстраиваться от токов нагрузки и качаний. В действительности же (см. §3.1 и 3.2) ТТ работают с погрешностью. Вследствие этого в указанных режимах в реле появляется ток небаланса:

(10.2)

Для исключения неселективной работы при внешних КЗ Iс.з дифференциальной РЗ должен превышать максимальное значение тока небаланса:

(10.3)

При КЗ на защищаемой ЛЭП (рис.10.1, б) первичные токи IIb и IIIb направлены от шин подстанций в ЛЭП (к месту КЗ). При этом вторичные токи IIb и IIIb суммируются в обмотке реле:

(10.4)

где Iк – полный ток КЗ, равный сумме токов IIb и IIIb, притекающих к месту повреждения (к точке К).

Под влиянием этого тока РЗ срабатывает. Выражение (10.4) показывает, что дифференциальная РЗ реагирует на полный ток КЗ в месте повреждения, и поэтому в сети с двусторонним питанием она обладает большей чувствительностью, чем токовые РЗ, реагирующие на ток, проходящий только по одному концу ЛЭП. Зона действия РЗ охватывает участок ЛЭП, расположенный между ТТ, к которым подключено токовое реле.

Токи небаланса в дифференциальной защите

Выразив в (10.2) вторичные токи через первичные, с учетом погрешности ТТ получим Iнб в реле:

(10.5)

где IIнам и IIIнам – токи намагничивания, отнесенные ко вторичным обмоткам ТТ (ТАI и ТАII). Так как при внешнем КЗ, сквозных токах нагрузки и качаний первичные токи в начале и конце ЛЭП одинаковы, II = III, (из 10.5) получим

(10.5а)

Это выражение показывает, что значение тока небаланса определяется различием значений токов намагничивания ТТ. Следовательно, для уменьшения тока небаланса необходимо выравнивать токи намагничивания IIнам и IIIнам по значению и фазе. Ток намагничивания ТТ (см. §3.2) зависит от магнитной индукции Вm, а также от вторичной ЭДС Ев ТТ (рис.10.2, а). Из сопоставления характеристик 1 и 2 на рис.10.2, а следует, что ток небаланса будет равен нулю при совпадении характеристик намагничивания 1 и 2 TAI и ТАII (рис.10.2, а) и равенстве вторичных ЭДС Ев в режиме сквозных токов. Ток небаланса возрастает с увеличением магнитной индукции В, которая, в свою очередь, повышается при увеличении первичного тока КЗ Iк и вторичной нагрузки Zн. Ток Iнб особенно возрастает при работе в области насыщения ТТ, так как небольшое расхождение в их характеристиках намагничивания вызывает большое различие в токах намагничивания даже при одинаковых значениях вторичных ЭДС Ев (Вm) [см. рис.10.2, а при Вm (Ев) в точке С]. Поэтому стремятся к тому, чтобы при максимальном токе внешнего КЗ м агнитопроводы ТТ не насыщались и работали в линейной части характеристики. Когда различие их Iнам невелико, погрешность ТТ е не превышает допустимых значений (10%).

Для выполнения этого условия применяются ТТ, насыщающиеся при возможно больших значениях Ев. Этому требованию наилучшим образом удовлетворяют ТТ класса Р, специально изготовляемые для дифференциальных РЗ (рис.10.2, б).

Принимаются также меры для ограничения значения Ев, от которого зависит значение магнитной индукции Вm, а следовательно, Iнам.

Чтобы избежать насыщения и увеличения Iнб, необходимо иметь Ев < Енас (рис.10.2, а), поскольку

(10.6)

где Zв и Zн – сопротивления вторичной обмотки ТТ и подключенной к ней нагрузки.

Как было показано в (8.3), при заданном значении тока Iк и Енас необходимо уменьшать нагрузку Zн ТТ и увеличивать коэффициент трансформации КI. Кроме того, при однотипных ТТ для выравнивания токов IIнам и IIIнам необходимо выравнивать нагрузку обмоток ТТ, т.е. обеспечивать условие ZIн = ZIIн, при котором ЕIв = ЕIIв. В схеме с циркуляцией токов нагрузку каждого ТТ составляет сопротивление соединительных проводов от зажимов ТТ до ИО тока. Входное сопротивление ИО не учитывается, так как при внешних КЗ и других сквозных токах ток в нем отсутствует. Допустимые значения ZIн и ZIIн, при которых ТТ работают в линейной части характеристики намагничивания, выбираются по кривым предельной кратности, обеспечивающим погрешность ТТ не более 10%. Такой режим работы ТТ и уровни небаланса могут быть обеспечены при соблюдении указанных выше условий в установившемся режиме КЗ.

В переходном режиме Iнам ТТ может во много раз превосходить значения установившегося режима, что влечет за собой резкое увеличение Iнб.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]