Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_k_reyting_kontrolyu.docx
Скачиваний:
2
Добавлен:
04.09.2019
Размер:
1.17 Mб
Скачать

Капиллярные явления.

Существование смачивания и краевого угла приводит к тому, что вблизи стенок сосуда наблюдается искривление поверхности жидкости. Если жидкость смачивает стенки, поверхность имеет вогнутую форму, если не смачивает – выпуклую. Такого рода изогнутые поверхности жидкости называются мениском. (рис. 10.11)

Смачивание

Несмачивание

Рис. 10.11

Под искривлённой поверхностью в капилляре давление будет отличаться от давления под плоской поверхностью на величину . Между жидкостью в капилляре и в широком сосуде устанавливается такая разность уровней , чтобы гидростатическое давление уравновешивало капиллярное давление . В случае сферической формы мениска

. Радиус кривизны мениска выразим через краевой угол и радиус капилляра r , тогда ,

В случае смачивания и высота поднятия жидкости в капилляре тем больше, чем меньше радиус капилляра r.

Капиллярное явление занимает в жизни человека исключительную роль. Снабжение влагой растений, деревьев происходит именно с помощью капилляров, которые есть в каждом растении. Капиллярные явления могут играть и отрицательную роль. Например, в строительстве. Необходимость гидроизоляции фундаментов зданий вызвана капиллярными явлениями.

8. Механизм пластической деформации. В основе пластического деформирования металлов лежит перемещение дислокаций. Сущностью пластического деформирования является сдвиг, в результате которого одна часть кристалла смещается по отношении к другой за счёт скольжения дислокаций. На рис. 11.7 (а, б, в) изображено движение краевой дислокации с образованием ступеньки единичного сдвига.

а

б

в

Рис. 11.7

Заметим, что в действительности атомы перескакивают в новые положения небольшими группами поочерёдно. Такое поочерёдное перемещение атомов может быть представлено как перемещение дислокации. Дислокации служат причиной того, что пластическая деформация реальных кристаллов происходит под воздействием напряжений на несколько порядков меньших, чем вычисленных для идеальных кристаллов. Но если плотность дислокаций а также концентрация примесей велики, то это приводит к сильному торможению дислокаций и прекращению их движения. В результате, как ни парадоксально, прочность материала растёт.

Деформация растяжения. Закон Гука.

Характер изменения сил, связывающих атомы в твёрдом теле от расстояния между ними качественно такой же, как в газах и жидкостях (рис. 11.8). Если к стержню длиной и сечением приложить силу (рис. 11.9), то под действием этой силы стержень удлинится на некоторую величину . При этом расстояния между соседними атомами вдоль оси стержня возрастут на некоторую величину (рис. 11.8). Удлинение всей цепочки атомов связано с очевидным соотношением :

(*)

(где – расстояние между соседними атомами при ). При смещении атомов из своих положений равновесия между ними возникают силы притяжения , причём возрастает с увеличением :

.

Мысленно расчленим стержень на ряд параллельных цепочек атомов. Число цепочек на единицу площади

Рис. 11.8

Рис. 11.9

обозначим . Тогда во всём стержне будет действовать суммарная сила:

,

причём будет возрастать, пока не уравновесит .

с учётом соотношения (*):

. (**)

Разделим обе части на , тогда

.

Отношение механическое напряжение деформации растяжения обозначим . Произведение постоянных для данного материала величины обозначим (модуль Юнга). Отношение обозначим (относительное удлинение). С учётом этих обозначений уравнение (**) приобретёт вид (одна из форм закона Гука)

Закон Гука: относительное удлинение прямо пропорционально приложенному напряжению.

При с увеличением силы притяжения уменьшаются, и наступает разрыв.

9.

Фазой называется макроскопическая физически однородная часть вещества, отделённая от остальных частей системы поверхностью раздела. Фазовое равновесие – одновременное существование фаз в многофазной системе (без изменения одной фазы за счет другой).

Разные фазы одного и того же вещества могут находиться в равновесии, соприкасаясь друг с другом. Такое равновесие наблюдается лишь в ограниченном интервале температур, причём каждому значению температуры соответствует своё значение давления , при котором возможно равновесие. Совокупность состояний равновесия 2-х фаз изображается на диаграмме линией . Три фазы одного и того же вещества (твёрдая, жидкая и газообразная или жидкая и две твёрдых или три твёрдых) могут находиться в равновесии только при единственных значениях температуры и давления, которые на диаграмме соответствует точка, называемая тройной.

В термодинамике доказывается, что равновесие более чем 3-х фаз одного и того же вещества невозможно (и это подтверждено экспериментально).

Диаграмма состояния. (рис. 12.1)

1-2-3 переход кристалл жидкость газ

4-5 кристалл газ

6-7 переход из жидкости в газ без расслоения на фазы.

Рис. 12.1

Определение. Сублимация (возгонка) – непосредственный (без плавления) переход из кристаллического состояния в газообразное.

Из диаграммы (рис. 12.1) следует, что жидкая фаза может находиться в равновесии при давлениях не меньше, чем давление в тройной точке . Например, в случае углекислоты ( ) =5,11 атм, поэтому при атмосферном давлении (1 атм.) углекислота может существовать только в твёрдом и газообразном состояниях. Твёрдая углекислота (называемая сухим льдом) на воздухе сублимирует, а не тает (переход 4-5). Для большинства же обычных веществ значительно меньше атмосферного давления (например, для =4,58 мм. рт. ст.), поэтому переход из кристаллического состояния в газообразное осуществляется через жидкую фазу.

Кривая испарения заканчивается в критической точке К. Поэтому возможен процесс в обход критической точки К. в этом случае переход из жидкого состояния в газообразное совершается непрерывно (процесс ) без расслаивания на две фазы. При температурах выше критической вещество не может быть сжижено никаким сжатием.

Фазовые переходы с поглощением или выделением скрытой теплоты перехода называются фазовыми переходами первого рода. Например, в процессах плавления или кристаллизации. Фазовые переходы, не связанные со скрытой теплотой перехода, называются фазовыми переходами второго рода. Например, переход парамагнетик – ферромагнетик.

Уравнение Клапейрона – Клаузиуса

(без вывода).

теплота фазового перехода, температура, и объёмы обеих фаз. ( и , относятся к одному и тому же количеству вещества, например, к 1 молю или 1 кг, т.е. является удеальными).

определяет наклон фазовой кривой фазового равновесия Р(Т). Уравнение Клапейрона – Клаузиуса даёт изменение температуры фазового перехода при изменении давления.

Пример. Для воды (льда) теплота плавления . Разница удельных объёмов льда и воды при 0 (легко найти из соответствующих плотностей).

. То есть, с увеличением давления на одну атмосферу точка плавления льда понижается примерно на 0,0075 град.

Опыт. Если на брусок льда, лежащий своими концами на неподвижных опорах, накинуть проволочную петлю, и к ней подвесить тяжёлый груз, то лёд под проволокой плавится. Вода выдавливается из-под проволоки и замерзает над ней. Проволока постепенно проходит через брусок, однако брусок остаётся неразрезанным.

10. Основные термодинамические понятия

Термодинамика в отличие от молекулярно-кинетической теории не вдаётся в рассмотрение микроскопической картины явлений (оперирует с макропараметрами). Термодинамика рассматривает явления, опираясь на основные законы (начала), которые являются обобщением огромного количества опытных данных.

Внутренняя энергия – энергия физической системы, зависящая от её внутреннего состояния. Внутренняя энергия включает энергию хаотического (теплового) движения всех микрочастиц системы (молекул, атомов, ионов и т.д.) и энергию взаимодействия этих частиц. Кинетическая энергия движения системы как целого и её потенциальная энергия во внешних силовых полях во внутреннюю энергию не входит. В термодинамике и её приложениях представляет интерес не само значение внутренней энергии, а её изменение при изменении состояния системы. Внутренняя энергия – функция состояния системы.

Работа термодинамической системы над внешними телами заключается в изменении состояния этих тел и определяется количеством энергии, передаваемой системой внешним телам при изменении объема.

Работа в термодинамике не является полным дифференциалом (не является функцией состояния, а зависит от пути) и обозначается .

Для того чтобы изменить объём, занимаемый газом, надо совершить работу. Представим себе газ, заключённый в цилиндрический объём с поршнем, движением которого изменяется объём газа (рис. 14.1).

Рис. 14.1

Сила, создаваемая давлением газа на поршень площади равна . Работа, совершаемая при перемещении поршня , равна , где изменение объёма газа (рис. 14.1), то есть

Теплота (количество теплоты) – количество энергии, получаемой или отдаваемой системой при теплообмене. Элементарное количество теплоты не является в общем случае дифференциалом какой-либо функции параметров состояния. Передаваемое системе количество теплоты, как и работа, зависит от того, каким способом система переходит из начального состояния в конечное. (В отличие от внутренней энергии, для которой , но , нельзя сказать, сколько работы содержит тело, “это функция” процесса – динамическая характеристика).

1-ый закон (начало) термодинамики: количество теплоты, сообщённое системе, идёт на приращение внутренней энергии системы и на совершение системой работы над внешними телами.

где количество сообщённой телу теплоты;

и начальное и конечное значения внутренней энергии;

работа, совершённая системой над внешними телами.

В дифференциальной форме 1-ое начало:

сообщённое телу элементарное количество теплоты;

изменение внутренней энергии;

совершённая телом работа (например, работа, совершённая при расширении газа).

11. Применение 1-го начала термодинамики к изопроцессам идеального газа

(Изопроцессы от (греч.) – равный). Процессы, происходящие при каком-то постоянном параметре ( изотермический; изобарический; изохорический).

Теплоёмкостью тела называется величина, равная отношению сообщённого телу количества теплоты к соответствующему приращению температуры .


Размерность теплоёмкости тела .

Аналогичные определения вводятся для 1 моля (молярная теплоёмкость

), и для единицы массы вещества .

  1. Рассмотрим нагревание газа при постоянном объёме. По первому закону термодинамики:

, т.к. , то .

по определению, а для процесса с :

, где

теплоёмкость газа при постоянном объёме.

Тогда и

  1. Теплоёмкость газа при постоянном давлении:

.

Для идеального газа для 1 моля (из уравнения Менделеева-Клапейрона).

.

Продифференцируем это выражения по температуре Т, получим:

, получим для 1 моля

Но выражение называется уравнением Майера. Оно показывает, что всегда больше на величину молярной газовой постоянной. Это объясняется тем, что при нагревании газа при постоянном давлении по сравнению с процессом при постоянном объёме, требуется ещё дополнительное количество теплоты на совершение работы расширения газа, т.к. постоянство давления обеспечивается увеличением объёма газа.

  1. При адиабатическом процессе (процесс протекающий без теплообмена с внешней средой).

, , т.е. теплоёмкость в адиабатическом процессе равна нулю.

  1. При изотермическом процессе , , и, следовательно, теплоёмкость .

Существуют процессы, при которых газ, расширяясь, совершает работу большую, чем полученная теплота, тогда его температура понижается, несмотря на приток теплоты. Теплоёмкость в этом случае отрицательна. В общем случае .

Работа, совершаемая газом при изопроцессах

Изобарный .

Диаграмма этого процесса (изобары) в координатах изображается прямой, параллельной оси (рис. 14.2). При изобарном процессе работа газа при расширении объёма от до равна:


Рис. 14.2

И определяется площадью заштрихованного прямоугольника на рис. 14.2.

Изохорный процесс ( ). Диаграмма этого процесса

(изохора) в координатах изображается прямой, параллельной оси ординат (рис. 14.3). поскольку , то .

Изотермический процесс ( ). (рис. 14.4). Воспользовавшись уравнением состояния идеального газа Менделеева- Клайперона для работы в изотермическом процессе получаем:

Рис. 14.3

Изотермический процесс является идеальным процессом, т.к. расширение газа при постоянной температуре может происходить только бесконечно медленно. При конечной скорости расширения возникнут градиенты температуры.

12. Адиабатический (адиабатный) процесс

Это процесс, происходящий без теплообмена с окружающими телами. Рассмотрим, при каких условиях можно реально осуществить адиабатический процесс, или приблизиться к нему.

1. Необходима адиабатическая оболочка, теплопроводность которой равна нулю. Приближением к такой оболочке может служить сосуд Дьюара.

2. 2-ой случай – процессы, протекающие очень быстро. Теплота не успевает распространиться и в течение некоторого времени можно полагать .

3. Процессы, протекающие в очень больших объёмах газа, например, в атмосфере (области циклонов, антициклонов). Для выравнивания температуры передача теплоты должна происходить из соседних, более нагретых слоёв воздуха, на это часто требуется значительное время.

Для адиабатического процесса первый закон термодинамики:

или .

В случае расширения газа , , (температура понизится). Если произошло сжатие газа , то (температура повышается). Выведем уравнение, связывающее параметры газа при адиабатическом процессе. Учтём, что для идеального газа , тогда

Разделим обе части уравнения на :

.

Из уравнения Майера , тогда

.

Обозначим .

.

Проинтегрируем это уравнение:

Отсюда

Получили уравнение Пуассона (для адиабаты) (1 – ая форма). Заменим :

,

т.к. для данной массы газа величина постоянная, то

2 – ая форма уравнения Пуассона. На рис. 14.5 представлены сравнительные графики изотермы и адиабаты.

Рис. 14.5

Так как , то график адиабаты более крутой по сравнению с изотермой. Вычислим работу при адиабатическом процессе:

т.е

13.

Анализируя работу тепловых двигателей, французский инженер С. Карно в 1824г. пришел к выводу, что наивыгоднейшим круговым процессом является обратимый круговой процесс, состоящий из двух изотермических и двух адиабатических процессов, т.к. он характеризуется наибольшим коэффициентом полезного действия. Такой цикл получил название цикла Карно. В прямом цикле Карно рабочее тело изотермически, а затем адиабатически расширяется, после чего снова изотермически (при более низкой температуре) и потом адиабатически сжимается. Т.е. цикл Карно ограничен двумя изотермами и двумя адиабатами.

При изотермическом расширении от нагревателя отбирается тепло   (на участке 1-2 рис. 9.11). Вследствие этого температура газа поддерживается неизменной. Соответственно, параметры точки 2 будут равны   . На участке 2-3 происходит адиабатное расширение. Внутренняя энергия газа уменьшается и его температура падает до Т2. Параметры точки 3 -   . На участке 3-4 газ изотермически сжимается. Параметры точки 4 -   . Выделяющееся при этом тепло   отбирается холодильником. Участок 4-1 -адиабатическое сжатие до исходного состояния, соответствующего точке 1. Таким образом, завершен цикл “1-2-3-4-1 и в итоге нагреватель отдал газу теплоту   , а холодильник отобрал   Разность   определяет полезную работу газа за один цикл, так как согласно I началу термодинамики   , но для кругового процесса   и, следовательно   .

Отношение полезной работы к затраченной энергии нагревателя определяет коэффициент полезного действия (к.п.д.) тепловой машины:

(9.23)

Эта формула справедлива для любого обратимого и необратимого процесса.

Определим коэффициент полезного действия цикла Карно для обратимого процесса. Теплота подводится на участке 1-2 и отводится на участке 3-4. Для изотермического процесса внутренняя энергия Q=const и все подводимое тепло расходуется на работу  .

Тогда или Для изотермического процесса работа   С учетом последних выражений

(9.24)

Покажем, что

Так как процессы на участках 2-3 и 1-4 адиабатические, для определения связи между   и   и   и  используем уравнение Пуассона в виде 

Следовательно, и Разделим эти уравнения и получим Тогда выражение для к.п.д. (9.24) примет вид

Эта формула справедлива только для обратимого цикла Карно.

Теоремы Карно.

  1. Все обратимые машины, работающие по циклу Карно, имеют, независимо от природы рабочего тела, одинаковый КПД при условии если у них общий нагреватель и холодильник.

  2. Если две тепловые машины имеют общий нагреватель и холодильник и одна обратимая, а другая необратимая, то КПД обратимой больше необратимой

Электричество.

1. . Понятие электростатического поля.

Все тела в природе способны электризоваться, т.е. приобретать заряд. Наличие электрического заряда проявляется в том, что заряженные тела взаимодействуют друг с другом. Существует два типа электрических зарядов, условно названных отрицательными и положительными. Носителями отрицательного заряда являются в основном электроны; ядра атомов заряжены положительно. Полагают, что существование этих двух типов заряда является проявлением симметрии природы (как, например, левое и правое). Другим фундаментальным свойством заряда является его дискретность, его кратность, хоть и малой, но вполне определенной величине. В электрически изолированной системе общий заряд системы не изменяется (закон сохранения заряда). Поле, создаваемое электрическими зарядами и обнаруживающее себя воздействием на другие заряды называется электрическим полем. Если заряды неподвижны и поле не изменяется, то поле называется электростатическим.

Взаимодействие зарядов описывается законом Кулона. Если расстояние между заряженными телами много больше размеров тел, заряды можно считать точечными.

Закон Кулона. Сила взаимодействия точечных неподвижных зарядов в вакууме прямо пропорциональна величине зарядов и обратно пропорциональна квадрату расстояния между ними. Для одноименных зарядов (рис. 16.1)

где - коэффициент пропорциональности, - электрическая постоянная ( Ф/м);

Рис. 16.1

, - величины электрических зарядов; – расстояние между зарядами; – единичный вектор; – сила, действующая на заряд со стороны заряда . Знак «-» обусловлен тем, что сила направлена противоположно вектору .

Пример использования закона Кулона.

Задача. Найти силу взаимодействия заряженного стержня с зарядом и длиной с точечным зарядом , находящимся на расстоянии от края стержня на одной прямой с ним.

Дано: .

Найти:

Рис. 16.2

Решение. Разобьем стержень (рис. 16.2) на дифференциально малые элементы длиной с зарядом , которые мы можем считать точечными. Сила взаимодействия заряда с по закону Кулона . Представим как заряд, приходящийся на единицу длины , умноженный на длину элемента , т.е. , тогда . Интегрируя по длине стержня, получим .

Заметим, что при , т.е. стержень уже можно считать точечным зарядом.

Напряженность электрического поля – это его силовая характеристика, векторная величина, определяемая отношением силы, действующей на заряд в данной точке поля, к величине заряда.

Размерность .

Концепция дальнодействия заключается в том, что при изменении положения одного заряда относительно другого заряда сила взаимодействия изменяется мгновенно.

Концепция близкодействия. При изменении положения одного заряда относительно другого сила взаимодействия изменяется с конечной скоростью (в вакууме – со скоростью света). Взаимодействие осуществляется при помощи посредника – электрического поля, создаваемого зарядами. Это концепция современной физики. Она пришла на смену концепции дальнодействия.

Принцип суперпозиции электрических полей. Как следует из опыта, сила, действующая на некоторый заряд со стороны системы зарядов, равна векторной сумме сил, с которыми каждый из зарядов системы действует на данный заряд . Поделив последнее выражение на величину заряда, получим: .

Из определения напряженности следует

Принцип суперпозиции электрических полей: напряженность поля, создаваемого системой зарядов в некоторой точке, равна векторной сумме напряженностей, создаваемых в отдельности каждым зарядом системы в данной точке.

Напряженность электрического поля, создаваемого точечным неподвижным зарядом в некоторой точке на расстоянии от него, можно получить с помощью закона Кулона:

Силовые линии. Для наглядности электрические поля изображают с помощью силовых линий, т.е. воображаемых линий, в каждой точке которых напряженность направлена по касательной. На рисунке 16.3 изображены картины силовых линий для некоторых случаев:

а)

б)

в)

г)

Рис. 16.3

а) и б) – одиночные заряды разных знаков,

в) система двух разноименных зарядов,

г) система двух одноименных зарядов.

2. Поток напряженности электрического поля. Потоком напряженности электрического поля через некоторую площадку (рис.16.4) называется скалярное произведение вектора на вектор

Вектор по модулю равен ( ), направлен по нормали к площадке и называется вектором элементарной площадки ( ).

По правилу скалярного произведения . Полный поток через произвольную поверхность конечных размеров находится интегрированием по поверхности:

Рис. 16.4

Теорема Гаусса (Карл Гаусс – великий немецкий математик, 1777 – 1855 гг.). Постановка задачи: имеется система точечных зарядов, которые заключены в замкнутую поверхность произвольной формы . Требуется найти поток напряженности через эту поверхность.

Сначала рассмотрим случай, когда внутри поверхности находится один заряд (рис.16.5). Найдем элементарный поток . Напряженность поля точечного заряда в некоторой точке на поверхности .

Из рисунка видно, что , где - элементарная площадка, расположенная перпендикулярно радиус-вектору, проведенному из точки расположения заряда в точку .

Рис. 16.5

Тогда элементарный поток напряженности .

Отношение - элементарный телесный (пространственный) угол.

Найдем полный поток напряженности через поверхность , когда внутри нее один точечный заряд: . Обобщим этот результат на случай произвольного числа зарядов внутри поверхности (рис.16.6).

Воспользуемся принципом суперпозиции , тогда, используя то, что интеграл суммы равен сумме интегралов, получим

.

Таким образом,

Рис. 16.6

Теорема Гаусса. Поток вектора напряженности электрического поля через замкнутую поверхность равен алгебраической сумме зарядов, охватываемых этой поверхностью, деленной на электрическую постоянную.

«Алгебраическая сумма» означает, что каждый заряд берется со своим знаком («+» или «-»).

3. Применение теоремы Гаусса.

а) Поле бесконечной заряженной плоскости (рис. 16.7)

Введем поверхностную плотность заряда ( ). Выбираем вспомогательную гауссову поверхность , в данном случае в виде цилиндра, основания которого параллельны плоскости, а образующие перпендикулярны ей. Записываем теорему Гаусса .

Рис. 16.7

Раскладываем интеграл по поверхности на 3 интеграла (по левому основанию, правому основанию и боковой поверхности): . Угол между и для левого основания равен нулю, значит , т.е. .

Аналогичный результат мы получим и для правого основания. Поток напряженности через боковую поверхность равен нулю (угол , ; силовые линии параллельны боковой поверхности, ее не пересекают).

Заряд, вырезаемый гауссовой цилиндрической поверхностью на заряженной плоскости, равен . Тогда, подставляя полученное выражение в теорему Гаусса, получим , откуда напряженность поля заряженной плоскости равна

б) Поле плоского конденсатора.

Имеется две бесконечные заряженные плоскости, заряженные разноименно с поверхностной плотностью заряда (рис. 16.8). Воспользуемся принципом суперпозиции. Напряженность поля в области I: , где и - напряженности полей, создаваемых пластинами 1 и 2 соответственно. В проекции на ось X

.

Рис. 16.8

В области II .

В области III .

Таким образом, поле бесконечного плоского конденсатора сосредоточено внутри, между его пластинами, и равно

(Примечание: конденсатор можно считать бесконечным, если размеры пластин примерно на порядок больше расстояния между ними.)

в) Поле объемно-заряженного шара.

Пусть имеется равномерное скопление зарядов в виде шара (рис. 16.9) радиусом с объемной плотностью ( ). Поле шара обладает центральной симметрией. Записываем теорему Гаусса . Проведем внутри шара вспомогательную (гауссову) поверхность в форме сферы радиусом . Дальнейшие преобразования: . Напряженность по величине на одном и том же расстоянии от центра шара одинакова, поэтому, вынося за знак интеграла, получим:

, где - площадь гауссовой сферы.

Заряд, охватываемый гауссовой поверхностью, равен , где - объем шара.

В итоге, подставляя в теорему Гаусса, получаем , и поле внутри заряженной сферы

Рис. 16.9

Проведя аналогичные действия вне заряженной сферы, нетрудно получить

График зависимости представлен на рис. 16.10.

Рис. 16.10

4. Работа сил электростатического поля. Работа силы , совершаемая при перемещении материальной точки под действием этой силы равна , где - угол между направлением силы и направлением перемещения.

Пользуясь этой формулой можно найти работу по перемещению заряда в поле другого неподвижного заряда (рис. 17.1)

Заряд перемещается из точки 1 в точку 2 в поле заряда . Элементарная работа силы на перемещении равна:

.

Так как сила , то полная работа на пути из точки 1 в точку 2 равна , то есть:

Рис. 17.1

(*)

Потенциальность (консервативность) электростатического поля. Циркуляция вектора .

Из формулы (*) видно, что не зависит от пути перемещения заряда и определяется только относительными положениями и в начале и конце пути. Отсюда, в частности следует, что работа по перемещению заряда по замкнутому контуру равна нулю, то есть электростатическое поле является потенциальным.

Элементарную работу можно записать в форме: , где - вектор напряженности поля, создаваемого зарядом . Работа по замкнутому контуру равна:

Выражение называется циркуляцией вектора по замкнутому контуру. Для электростатического поля работа по замкнутому контуру из формулы (*) , отсюда , то есть

Таким образом, условием потенциальности электростатического поля является равенство нулю циркуляции вектора напряженности электростатического поля по любому замкнутому контуру.

5. Потенциал. Разность потенциалов.

Тело, находящееся в потенциальном поле имеет потенциальную энергию. Работу по перемещению тела можно представить в виде разности потенциальных энергий в начале и конце пути

Потенциальную энергию можно отсчитывать от любого уровня (так как физический смысл имеет только лишь разность потенциальных энергий). Удобно выбрать потенциальную энергию заряда на бесконечности за начало отсчета потенциальной энергии.

Устремим , тогда:

, а в общем случае:

(**)

где - потенциальная энергия заряда в поле заряда на расстоянии .

Определение. Потенциал – это энергетическая характеристика электростатического поля, скалярная величина, численно равная отношению потенциальной энергии, которую имеет заряд в данной точке поля, к величине этого заряда.

Подставляя выражения для потенциальной энергии (**), получим формулу для потенциала электростатического поля точечного заряда.

Единица измерения потенциала – Вольт. .

В силу введенного определения потенциала работа по перемещению заряда в электростатическом поле из точки 1 в точку 2.

,

откуда

,

Разность потенциалов – отношение работы по перемещению заряда к величине этого заряда, удельная работа кулоновских сил, однозначно определяемая начальной и конечной точками перемещения.

Связь между потенциалом и напряженностью электростатического поля.

Для работы на перемещении можно написать два эквивалентных выражения.

Знак « - » во второй формуле связан с тем, что работа сил поля над зарядом равна убыли потенциальной энергии заряда.

Сравнение двух формул приводит к связи между потенциалом поля и вектором напряженности электростатического поля .

Отсюда

; ; .

Вектор можно представить как , подставляя выражения для компонентов вектора , получим:

Выражение в скобках есть не что иное как , окончательно получаем:

Напряженность поля равна градиенту потенциала, взятому со знаком минус.

(Примечания. 1. Используя символ «набла» , связь между вектором напряженности и потенциалом можно представить более компактно:

2. В случае радиальной симметрии ).

Пример: Пусть имеются эквипотенциальные линии (линии одинакового потенциала) , и причем (рис. 17.2). Требуется указать направления векторов и в некоторой точке А. В соответствии с определением градиента он направлен в сторону быстрейшего возрастания , то есть по перпендикуляру к касательной в точке А к эквипотенциальной линии в сторону . Из формулы связи и следует, что вектор направлен в противоположную сторону.

6. Электрическое и электромагнитное поле В первую очередь, стоит заметить, что нельзя путать эти два понятия, несмотря на то, что они немного схожи. В природе существует электрические и магнитные поля, взаимодействующие между собой и, при определённых условиях могут порождающие друг друга.  Электромагнитное поле – это итог взаимодействия электрического и магнитного полей, фундаментальное физическое поле, которое возникает вокруг заряженных тел. Таким образом, электрическое поле – это часть поля электромагнитного, которое в свою очередь порождает электромагнитные волны, распространяющиеся в пространстве со скоростью света. Это не что иное, как возмущения электромагнитного поля. Электрическое поле Как уже было сказано ранее, электрическое поле – это часть фундаментального электромагнитного поля, это особый вид материи, который существует вокруг заряженных тел или частиц. Оно может существовать и в свободном виде, когда происходят изменения магнитного поля, так как они напрямую зависят друг от друга и взаимодействуют между собой. Примером такого изменения могут быть электромагнитные волны. Итак, электрическое поле возникает в пространстве вокруг заряженных тел и представляет собой вид материи, невидимой для обычного зрения человека. Но и его можно зафиксировать и измерить, благодаря тем характеристикам, которыми оно обладает.  На находящиеся в поле тела постоянно действуют электрические силы, они определяют запас энергии, которым обладает данное электрическое поле. На схемах электрическое поле изображают в виде непрерывных силовых линий – это традиционное представление, которое принято во всём мире. Силовые линии не являются вымыслом, они фактически существуют на самом деле. Если в электрическое поле поместить частички гипса, предварительно взвешенные в масле, то они будут поворачиваться вдоль линий, так можно определить направление. Напряжённость электрического поля Электрическое поле можно измерить. В качестве количественного показателя вводится такое понятие, как напряжённость электрического поля – это его силовая характеристика. Суть этой характеристики в том, что поле действует на любой заряд внутри его с некоторой определённой силой, а, следовательно, эту силу можно измерить и определить интенсивность её воздействия. Другими словами, напряжённость – это отношение силы, действующей на заряд, к величине этого заряда. В электротехнике с помощью напряжённости электрического поля характеризуют его интенсивность. Напряжённость можно назвать основной характеристикой электрического поля, его «силу и мощность» Электрический потенциал У электрического поля можно измерить различные количественные характеристики, можно определить его интенсивность и силу воздействия. По этим показателям можно судить о том воздействии, которое оно может оказывать на тела и на человека. Но у электрического поля есть и другая характеристика, которую можно назвать запасом энергии. Этот запас энергии является способностью электрического поля совершать работу. Что же именно подразумевается под этим? Энергию можно накопить, для этого, например, можно сжать или растянуть пружину, при этом пружина будет совершать определённую работу за счёт той энергии, которая появляется в ней. Точно также обстоит дело и с электрическим полем. Стоит только внести в него заряженное тело или частицу, то сразу высвобождается запас энергии. Заряд начинает двигаться вдоль силовых линий поля, а, следовательно, он совершает определённую работу. Энергия сосредоточена в каждой точке электрического поля и может высвобождаться в такие моменты. Для этой характеристики электрического поля ввели специальное понятие – электрический потенциал. Он существует для каждой конкретной точки и его значение будет равно той работе, которую совершат силы при перемещении заряда. При рассмотрении понятия электрического потенциала можно говорить и о разности потенциалов. Можно представить себе человека, который поднимается по лестнице. Чтобы ему подняться на десятый этаж, ему понадобится больше энергии, чем для того, чтобы подняться на седьмой. Так и в электрическом поле, чем дальше нужно переместить заряд, тем большую энергию нужно затратить.  В общих словах, электрический потенциал – это характеристика электрического поля, которая выражает его напряжённость. Она определяет «потенциал», запас энергии, работу, которую можно будет совершить. Кстати, в некоторых частных случаях, когда изменения электрического и магнитного полей не происходит, электрический потенциал называется электростатическим. Это более упрощённый случай, и напряжённость высчитывается по более простой формуле.  Электрическое напряжение Рассмотрев понятие электрического потенциала, можно переходить к ещё одной характеристике электрического поля – напряжению. Как уже было сказано ранее, каждая точка электрического поля обладает потенциалом, а между двумя разными точками образуется разница потенциалов. Разница потенциалов, как правило, гораздо важней, так как чаще приходится иметь дело именно с этой характеристикой. При перемещении заряда в поле, потенциал определяет ту работу, которая совершается при этом.  Таким образом, напряжение определяется отношением работы электрического поля A к величине заряда q, который перемещается в нём. Если вспомнить пример с человеком, который поднимается по лестнице, то в этом случае нас мало интересуют конкретные высоты каждого этажа, на который ему нужно подняться. Нам гораздо важней именно то расстояние, которое нужно пройти, разница между ними. Т. е., это и есть разница потенциалов, если ввести ещё и понятие груза, который нужно поднять на верхний этаж, можно понять, что значит напряжение. Между двумя точками электрического поля существует разница потенциалов и возникает напряжение. Оно характеризует тот запас энергии, который может высвободиться при перемещении заряда между этими двумя точками внутри рассматриваемого электрического поля. Все характеристики электрического поля зависят друг от друга, каждую их них можно определить, если известны другие. Напряжение – один из наиболее важных показателей электрической цепи, оно измеряется в Вольтах (В), по нему определяют работу и мощность.

7. Исходя из представлений о свободных электронах, Друде разработал классическую теорию электропроводности металлов, которая затем была усовершенствована Лоренцем. Друде предположил, что электроны проводимости в металле ведут себя подобно молекулам идеального газа. В промежутках между соударениями они движутся совершено свободно, пробегая в среднем некоторый путь   . Правда в отличие от молекул газа , пробег которых определяется соударениями молекул друг с другом, электроны сталкиваются преимущественно не между собой, а с ионами, образующими кристаллическую решетку металла. Эти столкновения приводят к установлению теплового равновесия между электронным газом и кристаллической решеткой. Полагая, что на электронный газ могут быть распространены результаты кинетической теории газов, оценку средней скорости теплового движения электронов можно произвести по формуле   . Для комнатной температуры (  300К) вычисление по этой формуле приводит к следующему значению:   . При включении поля на хаотическое тепловое движение, происходящее, со скоростью   , накладывается упорядоченное движение электронов с некоторой средней скоростью   . Величину этой скорости легко оценить, исходя из формулы, связывающей плотность тока j с числом n носителей в единице объема, их зарядом е и средней скоростью   :

(18.1)

Предельная допустимая техническими нормами плотность тока для медных проводов составляет около 10 А/мм2 = 107 А/м2. Взяв для n=1029 м-3, получим

Таким образом, даже при больших плотностях тока средняя скорость упорядоченного движения зарядов в 108 раз меньше средней скорости теплового движения   .

Элементарная классическая теория электропроводности металлов

Носителями тока в металлах являются свободные электроны, т. е. электроны, слабо связанные с ионами кристаллической решетки металла. Это представление о природе носителей тока в металлах основывается на электронной теории проводимости метал­лов, созданной немецким физиком П. Друде (1863—1906) и разработанной впоследствии нидерландским физиком X. Лоренцем, а также на ряде классических опытов, подтверждающих положения электронной теории.

Первый из таких опытов — опыт Рикке* (1901), в котором в течение года электрический ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндра (Сu, Аl, Сu) одинакового радиуса. Несмотря на то что общий заряд, прошедший через эти цилиндры, достигал огромного значения (3,5106 Кл), никаких, даже микроскопических, следов переноса вещества не обнаружилось. Это явилось экспериментальным доказательством того, что ионы в металлах не участвуют в переносе электричества, а перенос заряда в металлах осуществляется частицами, которые являются общими для всех металлов. Такими частицами могли быть открытые в 1897 г. английским физиком Д. Томсоном (1856—1940) электроны.

*К. Рикке (1845—1915) — немецкий физик.

 

Для доказательства этого предположения необходимо было определить знак и ве­личину удельного заряда носителей (отношение заряда носителя к его массе). Идея подобных опытов заключалась в следующем: если в металле имеются подвижные, слабо связанные с решеткой носители тока, то при резком торможении проводника эти частицы должны по инерции смещаться вперед, как смещаются вперед пассажиры, стоящие в вагоне при его торможении. Результатом смещения зарядов должен быть импульс тока; по направлению тока можно определить знак носителей тока, а зная размеры и сопротивление проводника, можно вычислить удельный заряд носителей. Идея этих опытов (1913) и их качественное воплощение принадлежат российским физикам С. Л. Мандельштаму (1879—1944) и Н. Д. Папалекси (1880—1947). Эти опы­ты в 1916 г. были усовершенствованы и проведены американским физиком Р. Толменом (1881—1948) и ранее шотландским физиком Б. Стюартом (1828—1887). Ими экспериментально доказано, что носители тока в металлах имеют отрицательный заряд, а их удельный заряд приблизительно одинаков для всех исследованных метал­лов. По значению удельного заряда носителей электрического тока и по определенному ранее Р. Милликеном элементарному электрическому заряду была определена их масса. Оказалось, что значения удельного заряда и массы носителей тока и электронов, движущихся в вакууме, совпадали. Таким образом, было окончательно доказано, что носителями электрического тока в металлах являютсясвободные электроны.

Существование свободных электронов в металлах можно объяснить следующим образом: при образовании кристаллической решетки металла (в результате сближения изолированных атомов) валентные электроны, сравнительно слабо связанные с атом­ными ядрами, отрываются от атомов металла, становятся «свободными» и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электро­ны, образуя своеобразный электронный газ, обладающий, согласно электронной теории металлов, свойствами идеального газа.

Электроны проводимости при своем движении сталкиваются с ионами решетки, в результате чего устанавливается термодинамическое равновесие между электронным газом и решеткой. По теории Друде—Лоренца, электроны обладают такой же энергией теплового движения, как и молекулы одноатомного газа. Поэтому, применяя выводы молекулярно-кинетической теории (см. (44.3)), можно найти среднюю скорость теплового движения электронов

которая для T=300 К равна 1,1105 м/с. Тепловое движение электронов, являясь хаотическим, не может привести к возникновению тока.

При наложении внешнего электрического поля на металлический проводник кроме теплового движения электронов возникает их упорядоченное движение, т. е. возникает электрический ток. Среднюю скорость v упорядоченного движения электронов мож­но оценить согласно формуле (96.1) для плотности тока: j=пev. Выбрав допустимую плотность тока, например для медных проводов 107 А/м2, получим, что при концент­рации носителей тока n = 81028м–3 средняя скоростьv упорядоченного движения электронов равна 7,810–4 м/с. Следовательно, v<<u, т. е. даже при очень боль­ших плотностях тока средняя скорость упорядоченного движения электронов, обуслов­ливающего электрический ток, значительно меньше их скорости теплового движения. Поэтому при вычислениях результирующую скорость v + u можно заменять скоростью теплового движения u.

Казалось бы, полученный результат противоречит факту практически мгновенной передачи электрических сигналов на большие расстояния. Дело в том, что замыкание электрической цепи влечет за собой распространение электрического поля со скоростью с (c=3108м/с). Через время t=l/c (— длина цепи) вдоль цепи установится стационарное электрическое поле и в ней начнется упорядоченное движение электро­нов. Поэтому электрический ток возникает в цепи практически одновременно с ее замыканием.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]