Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Взаимная индуктивность.doc
Скачиваний:
6
Добавлен:
27.08.2019
Размер:
1.08 Mб
Скачать

Эквивалентная замена индуктивных связей

В некоторых случаях анализ и расчет электрических цепей с взаимоиндукцией можно упростить, если заменить в них часть схемы с индуктивными связями на эквивалентную, не содержащую их. Покажем этот прием, который называется развязкой индуктивных связей, на примере схемы рис. 5.11.

В схеме на рис. 5.11 имеет место магнитная связь между элементами 1 и 2. Представим электрическую цепь на рис. 5.11, а в виде схемы рис. 5.11, б. Для этой схемы справедливо

(5.18)

Верхний знак соответствует случаю, когда одноименные зажимы подключены к одному узлу. Исключим в (5.18) из первого уравнения , а из второго – :

. (5.19)

При этом

(5.20)

Уравнениям (5.20) соответствует электрическая цепь на рис. 5.11, в, в которой магнитные связи заменены на сопротивления в ветвях 1 и 2 и в дополнительной третьей ветви, подключенной в эквивалентной схеме к месту соединения двух ранее индуктивно связанных элементов.

Таким образом, при «развязывании» двух индуктивно связанных ветвей, подключаемых к одному и тому же узлу, в эти ветви последовательно включены сопротивления , а в ветвь между общим узлом и остальной схемой – сопротивление . Отсутствие магнитных связей дает возможность вести расчеты в эквивалентной схеме всеми методами, основанными на законе Ома и законах Кирхгофа без каких-либо ограничений.

Трансформаторы Уравнения трансформатора без ферромагнитного сердечника

Трансформатор – устройство для передачи энергии из одной цепи в другую посредством электрической индукции. Он предназначен для преобразования величин токов и напряжений, для гальванического разделения электрических цепей, для преобразования сопротивлений по величине и для других целей.

Трансформатор может состоять из двух и более обмоток. Мы будем рассматривать трансформатор из двух разделенных обмоток без ферромагнитного сердечника (воздушный трансформатор), схема которого представлена на рис. 5.12.

Обмотка с зажимами 1-1’, присоединенная к источнику питания, – первичная, обмотка, к которой подключается сопротивление нагрузки , – вторичная. Сопротивление первичной обмотки , сопротивление вторичной – .

У равнения трансформатора при принятой полярности катушек и направлении токов имеют вид:

Этим уравнениям соответствует векторная диаграмма на рис. 5.13. Построение ее велось относительно тока , который направлен по действительной оси.

Входное сопротивление трансформатора

Обозначим , тогда уравнения (5.21) можно переписать

(5.22)

Входное сопротивление трансформатора . Учитывая, что и подставляя в первое уравнение (5.21), получим, что

(5.23)

Таким образом, входное сопротивление трансформатора со стороны первичных зажимов состоит из двух слагаемых: – сопротивление первичной обмотки без учета взаимоиндукции, , которое появляется за счет явления взаимоиндукции. Сопротивление как бы добавляется (вносится) из вторичной катушки и поэтому называется вносимым сопротивлением.

Входное сопротивление идеального трансформатора

Идеальным трансформатором (теоретическое понятие) называют такой трансформатор, в котором выполняются условия

(5.24)

При этом С определенной погрешностью такие условия можно выполнить в трансформаторе с сердечником с высокой магнитной проницаемостью, на который намотаны провода с малым активным сопротивлением.

Входное сопротивление этого трансформатора

(5.25)

Следовательно, идеальный трансформатор, включенный между нагрузкой и источником энергии, изменяет сопротивление нагрузки пропорционально квадрату коэффициента трансформации n.

С войство трансформа­тора преобразовывать вели­чины сопротивлений широко используется в различных об­ластях электротехники, связи, радиотехники, автоматики и прежде всего с целью согласо­вания сопротивлений источ­ника и нагрузки.

Схема замещения трансформатора

Схема двухобмоточного трансформатора без ферромагнитного сердечника может быть изображена так, как это представлено на рис. 5.14. Токораспределение в ней такое же, что и в схеме на рис. 5.12 без общей точки между обмотками.

Произведем в схеме на рис. 5.14 развязку индуктивных связей. При этом получим схему замещения трансформатора (рис. 5.15), в которой отсутствуют магнитные связи.

Энергетические процессы в индуктивно связанных катушках

Дифференциальные уравнения воздушного трансформатора (рис. 5.15):

(5.25)

Умножим первое уравнение на , а второе – на :

(5.26)

Сложив эти уравнения, получим суммарную мгновенную мощность, которая потребляется от источника и расходуется в первичной и в вторичной обмотках трансформатора и в нагрузке

(5.27)

где – мгновенная мощность на нагрузке, ;

– мгновенная мощность, расходуемая на тепло в обмотках трансформатора, ;

 – энергия магнитного поля обмоток трансформатора, .