Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
мид по гидравлике.doc
Скачиваний:
13
Добавлен:
25.08.2019
Размер:
4.58 Mб
Скачать
  1. Напряжения, скорость, потери при ламинарном течении.

Наблюдая за движением жидкости в прозрачной трубе, можно установить, что при малых скоростях течения краска, поступающая в трубу, движется в окружающей жидкости, не пе­ремешиваясь с ней. Такое параллельно-струйное движение называется ламинарным (слои­стым) режимом движения жидкости.

Если увеличивать скорость движения потока в трубе, то при некоторой скорости лами­нарный режим движения будет нарушен; окрашенная струйка примет вначале извилистую форму, при увеличении скорости извилистость возрастает, в отдельных местах возникают разрывы струйки. Дальнейшее увеличение скорости вызовет повсеместный разрыв струйки; при скорости, равной ив.кр. она теряет свою форму, перемешиваясь с потоком движущейся жидкости, окрашивая его по всему объему.

  1. Структура турбулентного потока.+ 28. Турбулентное течение в круглых трубах.

  1. Турбулентное течение в шероховатых трубах.

Турбулентное течение в шероховатых трубах

Исследование течения жидкости в шероховатых трубах практически полностью основываются на экспериментальных исследованиях. На их результатах основаны зависимости и расчётные формулы, применяющиеся для определения потерь энергии в подобных условиях. Основная формула для определения потерь напора – формула Дарси. Отличие заключается только в коэффициенте потерь на трение. В отличие от турбулентных потоков в гладких трубах, где коэффициент на трение   полностью определяется числом Рейнольдса Re, для потоков в трубах имеющих шероховатые внутренние поверхности   зависит ещё и от размеров этой шероховатости. Установлено, что решающее значение имеет не абсолютная высота неровностей (абсолютная шероховатость) k, а отношение высоты этих неровностей к радиусу трубы r0. Эта величина обозначается    и называется относительной шероховатостью. Одна и та же абсолютная шероховатость может практически не влиять на коэффициент трения в трубах большого диаметра, и существенно увеличивать сопротивление в трубах малого диаметра. Кроме того, на сопротивление потоку жидкости влияет характер шероховатости. По характеру шероховатость разделяют на естественную, при которой величина неровностей k по длине трубы различна, и регулярную, при которой размеры неровностей по всей трубе одинаковы. Регулярная шероховатость создаётсяискусственно и характеризуется тем, что имеет одинаковую высоту и форму неровностей по всей длине трубы. Шероховатость такого вида называют равномерно р аспределённой зернистой шероховатостью. Коэффициент потерь на трение в этом случае описывается функцией

  1. Характерные зоны движения жидкости. Опыты Никурадзе.

Движение жидкости по трубам широко распространено в природе и технике. Например, течение рек, течение нефти по нефтепроводу, течение крови по кровеносным сосудам человека и животных и т. д.

Продувая струю воздуха между двумя шариками или листами плотной бумаги, подвешенными на нитях, можно наблюдать их взаимное притяжение. Похожее явление возникает при движении больших судов в узком канале, где суда значительно уменьшают сечение потока жидкости.

По всей видимости, давление внутри движущейся жидкости или газа уменьшается по сравнению с давлением окружающей среды.

Выясним зависимость давления жидкости от скорости её течения в трубе. Воспользуемся для этого законом сохранения механической энергии.

Рассмотрим движение идеальной жидкости в наклонном участке трубопровода, находящегося в поле земного тяготения.

Выделим мысленно некоторый элемент жидкости. Жидкость, находясь в движении, обладает кинетической энергией. Если она поднимается или опускается, то изменяется её потенциальная энергия.

Согласно закону сохранения энергии работа, совершенная над рассматриваемым элементом жидкости внешними силами, которые поддерживают движение жидкости или газа, должна быть равна изменению его полной механической энергии: A = ΔEk + ΔEp.

Пусть за небольшой промежуток времени жидкость перемещается вверх и вправо. (S1S2 – поперечные сечения трубы слева и справа).

Левый участок жидкости перемещается на расстояние Δx1, за то же время правый – на Δx2.

Если жидкость несжимаема, объём слева равен объёму справа: ΔV1 = ΔV2 = ΔVS1 ∙ Δx1 = S2 ∙ Δx2.