Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие.doc
Скачиваний:
12
Добавлен:
23.08.2019
Размер:
443.39 Кб
Скачать

2.5. Закон Ома и его проявления в электроэнергетических системах. Активное электрическое сопротивление и его расчет для простейших конструкций.

Электрическое поле, действующее в электропроводящем пространстве, создаёт в каждой точке этого пространства определённую плотность тока. Закон Ома для любой точки электропроводящего пространства (закон Ома в дифференциальной форме) звучит следующим образом:

Плотность тока в любой точке проводящего пространства пропорциональна напряженности поля.

Математически эта формулировка выглядит следующим образом:

j =γE.

Здесь j- плотность тока в амперах, поделённых на квадратный метр; γ – удельная электрическая проводимость среды в сименсах, поделённых на метр;

Е – напряжённость электрического поля в вольтах, поделённых на метр.

Закон Ома в дифференциальной форме можно записать и через удельное электрическое сопротивление среды – ρ, измеряемое в омах, умноженных на метр:

E=ρj.

Если взять не точку, а проводник определённой длины и определённого сечения, то:

плотность тока, умноженная на сечение проводника, даст ток, протекающий по проводнику - j×S = I$

удельное электрическое сопротивление, умноженное на длину l, и поделённое на поперечное сечение проводника S даст активное сопротивление проводника - (см. ниже);

напряжённость поля в проводнике, умноженная на его длину даст падение напряжения в проводнике от протекающего тока - Е×l=U.

В результате получаем общеизвестную формулу закона Ома для участка цепи:

U=RI.

Словесная формулировка этого закона:

Падение напряжения на участке цепи равно произведению тока, протекающего по участку, на электрическое сопротивление этого участка.

Этот же закон можно сформулировать и так: «Падение напряжение на участке цепи пропорционально току, протекающему по этому участку». Отсюда следует следующее определение электрического сопротивления:

Электрическое сопротивление какого либо элемента – это коэффициент пропорциональности между током, протекающим по элементу, и падением напряжения на этом элементе (сравните с определениями электрической ёмкости, 2.6 и индуктивности, 2.7).

Закон Ома имеет большое значение при производстве, передаче и потреблении электрической энергии. Падение напряжения существует уже в обмотках генераторов, питающих током электроэнергетическую систему. Это следует учитывать при определении ЭДС генераторов. Значение ЭДС генератора должно быть больше напряжения, выдаваемого в энергосистему, и это превышение равняется падению напряжения в обмотке генератора. При передаче электроэнергии по проводам существует падение напряжения в проводах. Поэтому в вечернее время, когда потребителей много и ток в проводах увеличивается, напряжение у потребителя снижается. Мы замечаем это и в квартире: при подключении мощного электроприёмника (например, водоподогревателя) лампочки начинают гореть более тускло. Это связано с тем, что ток в проводах, подходящих к квартире, увеличивается, увеличивается падение напряжения в этих проводах и напряжение в квартире снижается. Поскольку сопротивление лампочек – величина неизменная, то при более низком напряжении уменьшается ток в лампочке, и она начинает светить более тускло.

Расчёт значения сопротивления какого-либо элемента состоит в том, что удельное электрическое сопротивление среды ρ умножается на геометрический параметр ГR, значение которого зависит от размеров элемента и формы электрического поля в этом элементе:

R= ρ×ГR.

Наиболее простыми для аналитических расчётом являются элементы, электрические поля в которых относятся к следующим типам:

- плоско- параллельное,

- радиально-цилиндрическое,

- радиально-сферическое.

Ниже приводится описание этих полей и необходимые для расчета формулы.

Плоскопараллельное поле.

В плоско-параллельном поле эквипотенциальные поверхности (поверхности равного потенциала, поверхности уровня) представляют собой параллельные плоскости, а линии плотности тока j, совпадающие с направлением вектора напряженности поля E, - параллельны друг другу и перпендикулярны этим плоскостям.

Значение сопротивления R:

.

Здесь ρ – удельное сопротивление среды, по которой протекает ток в Ом×м, l – длина пути тока (длина проводника) в м, S – сечение, поперечное линиям тока (площадь поперечного сечения) в м2. По этому выражению можно рассчитать сопротивление провода, сопротивление изоляции плоского конденсатора.

Радиально-цилиндрическое поле.

Эквипотенциальными в этом поле являются коаксиальные (имеющие общую ось) цилиндрические поверхности, а линии плотности тока располагаются по радиальным направлениям.

Значение сопротивления R

,

Здесь r1- радиус внутреннего цилиндра; r2- радиус внешнего цилиндра, l – длина цилиндров в метрах.

По этому выражению можно рассчитать сопротивление изоляции одножильного коаксиального кабеля (например, кабеля для телевизионной антенны) или одножильных кабелей на напряжение 110…500 кВ, имеющих экраны (жила – внутренний цилиндр, экран - наружный цилиндр).

Радиально-сферическое поле.

В этом поле поверхности уровня - это сферы с общим центром, а линии смещения направлены по радиусам.

Значение сопротивления:

,

причем, сопротивление между шаром и сферой бесконечного радиуса ( ):

,

Сопротивление полушария в два раза больше:

.

Если такое полушарие закопать у поверхности земли, то получится заземлитель, сопротивление стеканию тока с которого (сопротивление растеканию) можно вычислить по этому выражению.

Радиально сферическое поле является частным случаем более общей конфигурации поля – эллипсоидально-гиперболической. В этом поле эквипотенциальные поверхности – это эллипсоиды вращения, имеющие общие фокусы (конфокальные) Поверхности линий тока – гиперболоиды вращения, конфокальные с эллипсоидами. Эллипсоидально гиперболические поля могут быть двух видов: когда эллипсоиды сплюснуты и когда эллипсоиды вытянутые.

Сопротивление растеканию тока со сплюснутого эллипсоида определяется по выражению:

По этому выражению можно рассчитывать сопротивление заземляющего устройства подстанции, принимая за «а» радиус круга, равновеликого по площади с площадью подстанции, а за «L» - длину вертикальных заземлителей.

Сопротивление растеканию тока с вытянутого эллипсоида определяется по выражению:

По этому выражению можно рассчитывать сопротивление сваи или штыревого заземлителя, принимая за «а» радиус поперечного сечения.