Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Работа Кристаллы на конкурс.docx
Скачиваний:
5
Добавлен:
19.08.2019
Размер:
3.27 Mб
Скачать

Глава 3.

Построение кристаллов.

Кристаллы, кристаллы, соцветья

во мглу погруженной земли.

Когда расцвели вы, на свете

другие цветы не цвели.

Нацежен был мало-помалу

Из мрака лучистый хрусталь,

чтоб стало под силу кристаллу

вместить невместимую даль.

Мигель де Унамуно

Еще в XVIII в. английский ученый Роберт Гук и голландский ученый Христиан Гюйгенс обратили внимание на возможность построения правильных многогранников из плотно укладываемых шаров. Они предположили, что кристаллы построены из шарообразных частиц — атомов или молекул. Внешние формы кристаллов согласно этой гипотезе являются следствием особенностей плотной упаковки атомов или молекул. Независимо от них к такому же выводу пришел в 1748 г. великий русский ученый М. В. Ломоносов.

При плотнейшей укладке шаров в один плоский слой каждый шар оказывается окруженным шестью другими шарами, центры которых образуют правильный шестиугольник. Укладка шаров может быть осуществлена двумя способами.

Такие способы укладки слоев получили называние гексагональной плотноупакованной структуры и кубической плотноупакованной структуры. Обе упаковки дают степень заполнения объема 74%. Никакой другой способ расположения шаров в пространстве при отсутствии их деформации большей степени заполнения объема не дает.

При укладке шаров ряд за рядом способом гексагональной плотной упаковки можно получить правильную шестигранную призму, второй способ упаковки ведет к возможности построения куба из шаров. Гексагональной плотной упаковке атомов соответствует, например, форма кристаллов цинка, магния, кадмия. Кубической плотной упаковке соответствует форма кристаллов меди, алюминия, серебра, золота и ряда других металлов. Но этими двумя формами многообразие мира кристаллов вовсе не ограничивается.

Глава 4.

Рождение элементарных кристаллов.

«… кристаллос рождается из воды, когда она полностью утрачивает теплоту».

Аристотель

Римский поэт Клавдиан в 390 то же самое описал стихами:

Ярой альпийской зимой лед превращается в камень.

Солнце не в силах затем камень такой растопить.

Аналогичный вывод сделали в древности в Китае и Японии – лед и горный хрусталь обозначали там одним и тем же словом. И даже в 19 в. поэты нередко соединяли воедино эти образы:

Едва прозрачный лед, над озером тускнея,

Кристаллом покрывал недвижные струи.

А.С. Пушкин. К Овидию

Почему элементарные кристаллы льда шестиугольны легко попять, анализируя структуру кристаллической воды – льда.

В молекуле воды две электронные пары образуют полярные ковалентные связи между атомами водорода и кислорода, а оставшиеся две электронные пары остаются свободными и называются неподеленными.

Рис. Молекула воды

Поскольку у атома кислорода больше электронов, чем у атома водорода, электроны двух атомов водорода сдвигаются в сторону более электроотрицательного атома кислорода. Это приводит к тому, что два положительных заряда атомов водорода компенсируются равным по величине двум отрицательным зарядам атома кислорода. Поэтому электронное облако имеет неоднородную плотность. Около ядер водорода имеется недостаток электронной плотности, а на противоположной стороне молекулы, около ядра кислорода, наблюдается избыток электронной плотности. Это приводит к тому, что молекула воды представляет собой маленький диполь, содержащий положительный и отрицательный заряды на полюсах. Если соединить прямыми линиями эпицентры положительных и отрицательных зарядов получится объемная геометрическая фигура - правильный тетраэдр.

Элементарной ячейкой воды являются тетраэдры, содержащие связанные между собой водородными связями пять молекул Н2О. При этом у каждой из молекул воды в простых тетраэдрах сохраняется способность образовывать водородные связи. За счет их простые тетраэдры могут объединяться между собой вершинами, ребрами или гранями, образуя разнообразные пространственные структуры.

Рис. В кристаллической структуре льда каждая молекула воды участвует в 4 водородных связях, образуя тетраэдр.

Таким образом, структура воды связана с так называемыми платоновыми телами (тетраэдр, додекаэдр). Молекула воды также имеет форму платонова тела (тетраэдра).

И из всего многообразия структур в природе базовой является гексагональная (шестигранная) структура, когда шесть молекул воды (тетраэдров) объединяются в кольцо. Такой тип структуры характерен для льда, снега и талой воды.

Снежинка — сложная симметричная структура, состоящая из кристалликов льда, собранных вместе. Вариантов «сборки» множество — до сих пор не удалось найти среди снежинок двух одинаковых.

Существует даже классификация снежинок, но, несмотря на общие законы построения, снежинки все равно будут чуть-чуть отличаться друг от друга даже в случае относительно простых структур.