Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Довгяло Д.А. Лекции по метрологии (91с)+ОГЛ.doc
Скачиваний:
28
Добавлен:
18.08.2019
Размер:
1.83 Mб
Скачать

Детектор средневыпрямленного значения

Это измерительный преобразователь переменного напряжения в постоянный ток, пропорциональный средневыпрямленному значению входного сигнала (среднему значению модуля). Вольтамперная характеристика такого детектора должна иметь линейный участок в пределах диапазона входных напряжений. Примером подобного преобразователя может служить двухполупериодный выпрямитель с фильтром нижних частот. Наиболее распространенными являются мостовые схемы (рис. 4.11). В схеме рис. 4.11,а ток через диагональ моста протекает в одном и том же направлении в течение обоих полупериодов переменного напряжения. В положительный полупериод ток протекает по цепи: верхний входной зажим–диод VD1–диагональ моста – диод VD4– нижний входной зажим; в отрицательный: нижний зажим–диод VD3диагональ моста – диод VD2верхний зажим.

Р ис. 4.11

Направление тока соответствует проводящему направлению указанных диодов. Характеристики реальных диодов не имеют строго линейного участка, как это требуется условиями преобразования. Ток, протекающий через диод при положительном значении входного напряжения i≈u/(Rд(U)+R), где Rд(U)–сопротивление открытого диода, зависящее от приложенного напряжения, R сопротивление нагрузки.

Начальный участок характеристики близок к квадратичному. Поэтому будет иметь место погрешность, которая будет тем меньше, чем ближе к линейной будет характеристика диода.

Для улучшения линейности ΒΑΧ в диагональ моста последовательно с резистором R включают резистор Rдоб, сопротивление которого намного больше сопротивления открытого диода Rд(U). В этом случае

Зависимость прямого тока от напряжения будет близка к линейной. Уменьшение чувствительности, которое будет проявляться при включении Rдоб, можно компенсировать введением дополнительного усиления.

Схема рис. 4.11,б отличается от предыдущей тем, что вместо диодов VD3 и VD4 включены резисторы R1 и R2. В положительный полупериод напряжения ток протекает через диод VD1 и резистор R1. Через резистор R2 в этот полупериод ток не протекает, на его зажимах напряжение равно нулю. Поэтому, если в диагональ моста включить магнитоэлектрический вольтметр, он измеряет падение напряжения на R1. Очевидно, в отрицательный полупериод вольтметр измеряет падение напряжения на резисторе R2, поскольку через него и диод VD2 будет протекать ток.

Погрешность преобразования обусловлена, главным образом, нелинейностью ΒΑΧ диода и влиянием прямого сопротивления диода на ток, протекающий через выпрямительный мост.

Лекция 7. Измерение тока и напряжения особенности измерения силы тока и напряжения в радиоэлектронике

Сила тока и напряжение являются важнейшими физическими величинами в электро- и радиотехнике. Они характеризуют интенсивность протекания электрического процесса. Единица силы тока – ампер является основной единицей Международной системы (СИ) и воспроизводится на постоянном токе с помощью первичного эталона. Среднеквадратическое отклонение результата измерения (СКО) составляет S=4·10-6, а неисключенный остаток систематической погрешности (НСП) не превышает θ=8·10-6. Единица напряжения – вольт является производной единицей, но в силу ее особой важности воспроизводится также с помощью первичного эталона со СКО S=5·10-8 и НСП θ=10-6. Передача размера единицы от эталона рабочим средствам измерения осуществляется на основе государственной поверочной схемы, предусматривающей ступени передачи.

В связи с необходимостью измерения тока и напряжения в широком диапазоне частот созданы специальные эталоны ампера и вольта на переменном токе, соответствующие поверочные схемы и образцовая аппаратура.

Измерения тока и напряжения проводят в диапазоне от постоянного тока до частот 1...2 ГГц. На более высоких частотах эти величины теряют свою однозначность, поскольку изменяют свое значение вдоль линии передачи и в ее поперечном сечении. Ток и напряжение на этих частотах измерять весьма сложно, поскольку очень велико влияние измерительной цепи на измеряемую цепь. По указанным причинам на СВЧ предпочитают измерять мощность, а не ток и напряжение.

В электрических цепях удобней измерять напряжение, а не ток, поскольку вольтметр подключают параллельно исследуемой цепи, и не приходится нарушать схему соединений. При измерении тока приходится разрывать цепь, что в ряде случаев приводит к большим искажениям процессов, протекающих в устройстве. В силу этих причин измерение силы тока производят на постоянном токе и переменном на частотах до 10 МГц.

КЛАССИФИКАЦИЯ ВОЛЬТМЕТРОВ

Измерители напряжения являются самой многочисленной группой среди средств измерения, применяемых в радиоэлектронике. В основу классификаций вольтметров положены следующие признаки.

1. Вид измеряемого напряжения: вольтметры постоянного тока (В2), переменного тока (В3), импульсного тока (В4), селективные (В6).

2. Тип применяемых измерительных преобразователей: электромеханические и электронные.

3. Тип отсчетного устройства: стрелочные (аналоговые) и цифровые вольтметры.

Парк аналоговых приборов характеризуется единой конструктивной базой, идентичностью расположения органов управления, удобством эксплуатации, метрологической обеспеченностью.

4. Тип структурной схемы: приборы прямого преобразования и уравновешивающего преобразования. Приборы уравновешивающего преобразования разделяют на приборы с автоматическим и ручным уравновешиванием.

5. Значение измеряемого напряжения: пиковое (амплитудное), среднеквадратическое и средневыпрямленное.

6. Частотный диапазон: низкочастотные, высокочастотные, сверхвысокочастотные, широкополосные вольтметры.