Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МУ для СМ (2 часть) .doc
Скачиваний:
16
Добавлен:
15.08.2019
Размер:
3.52 Mб
Скачать

Text f. 1860s

Brown & Sharpe's groundbreaking universal milling machine, 1861

In 1861, Frederick W. Howe, while working for the Providence Tool Company, asked Joseph R. Brown of Brown & Sharpe for a solution to the problem of milling spirals, such as the flutes of twist drills. These were filed by hand at the time. Brown designed a "universal milling machine" that, starting from its first sale in March 1862, was wildly successful. It solved the problem of 3-axis (XYZ) travel much more elegantly than had been done in the past, and it allowed for the milling of spirals using an indexing head fed in coordination with the table feed. The term "universal" was applied to it because it was ready for any kind of work and was not as limited in application as previous designs. (Howe had designed a "universal miller" in 1852, but Brown's of 1861 is the one considered groundbreakingly successful.)

Brown also developed and patented (1864) the design of formed milling cutters in which successive sharpenings of the teeth do not disturb the geometry of the form.

The advances of the 1860s opened the floodgates and ushered in modern milling practice.

Text g. 1870s-1930s

Two firms which most dominated the milling machine field during these decades were Brown & Sharpe and the Cincinnati Milling Machine Company. However, hundreds of other firms built milling machines during this time, and many were significant in one way or another. The archetypal workhorse milling machine of the late 19th and early 20th centuries was a heavy knee-and-column horizontal-spindle design with power table feeds, indexing head, and a stout overarm to support the arbor.

A. L. De Leeuw of the Cincinnati Milling Machine Company is credited with applying scientific study to the design of milling cutters, leading to modern practice with larger, more widely spaced teeth.

Around the end of World War I, machine tool control advanced in various ways that laid the groundwork for later CNC technology. The jig borer popularized the ideas of coordinate dimensioning (dimensioning of all locations on the part from a single reference point); working routinely in "tenths" (ten-thousandths of an inch, 0.0001") as an everyday machine capability; and using the control to go straight from drawing to part, circumventing jig-making. In 1920 the new tracer design of J.C. Shaw was applied to Keller tracer milling machines for die- sinking via the three-dimensional copying of a template. This made diesinking faster and easier just as dies were in higher demand than ever before, and was very helpful for large steel dies such as those used to stamp sheets in automobile manufacturing. Such machines translated the tracer movements to input for servos that worked the machine leadscrews or hydraulics. They also spurred the development of antibacklash leadscrew nuts. All of the above concepts were new in the 1920s but would become routine in the NC/CNC era. By the 1930s, incredibly large and advanced milling machines existed, such as the Cincinnati Hydro-Tel, that presaged today's CNC mills in every respect except the CNC control itself.