Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Биофизика 3 модуль.doc
Скачиваний:
15
Добавлен:
15.08.2019
Размер:
173.57 Кб
Скачать

Модель Эйнтховена.Экг

Эйнтховен предложил снимать разность биопотенциалов сердца между вершинами равностороннего треуг.(треугольника Эйнтховена),которые приблизительно расположены на правой и левой руке и левой ноге.В данном случае расположение точек установки электродов измерительного устройства по Эйнтховену получили название стандартных отведений электрокардиограммы:1 отведение-электроды устанавливаются на правой и левой руке,2 отведение-на правой руке и левой ноге,3 отведение-на левой руке и левой ноге.Поскольку амплитуда тканевых биопотенциалов пропорциональна проекции вектора возбуждения(дипольного момента)на стороны треуг.Эйнтховена,то из рисунка ясно,что наибольшая амплитуда ЭКГ будет регистрироваться во втором стандартном отведении.

Электрокардиография регистрирует биоэлектрический потенциал работающего сердца; электрический сигнал в этом случае примерно в 100 раз мощнее. Электрические сигналы регулируют работу сердца. Прямым результатом электрокардиографии является получение электрокардиограммы (ЭКГ) — графического представления разности потенциалов возникающих в результате работы сердца и проводящихся на поверхность тела. На ЭКГ отражается усреднение всех векторов потенциалов действия, возникающих в определённый момент работы сердца.

Применение: Определение частоты и регулярности сердечных сокращений (например, экстрасистолы (внеочередные сокращения), или выпадения отдельных сокращений — аритмии).Показывает острое или хроническое повреждение миокарда (инфаркт миокарда, ишемия миокарда).Может быть использована для выявления нарушений обмена калия, кальция, магния и других электролитов. Выявление нарушений внутрисердечной проводимости (различные блокады).Метод скрининга при ишемической болезни сердца, в том числе и при нагрузочных пробах. Даёт понятие о физическом состоянии сердца (гипертрофия левого желудочка).Может дать информацию о внесердечных заболеваниях, таких как тромбоэмболия лёгочной артерии.В определённом проценте случаев может быть абсолютно неинформативна. Позволяет удалённо диагностировать острую сердечную патологию (инфаркт миокарда, ишемия миокарда) с помощью кардиофона.

Для измерения разности потенциалов на различные участки тела накладываются электроды.

Нормальная ЭКГ: Соответствие участков ЭКГ с соответствующей фазой работы сердца

Обычно на ЭКГ можно выделить 5 зубцов: P, Q, R, S, T. Иногда можно увидеть малозаметную волну U. Зубец P отображает работу предсердий, комплекс QRS — систолу желудочков, а сегмент ST и зубец T — процесс реполяризации миокарда.

Отведения Каждая из измеряемых разниц потенциалов называется отведением. Отведения I, II и III накладываются на конечности: I — правая рука — левая рука, II — правая рука — левая нога, III — левая рука — левая нога. С электрода на правой ноге показания не регистрируются, он используется только для заземления пациента.

Электропроводность – способность веществ проводить электрический ток, обусловленная наличием в них подвижных заряженных частиц (электронов, ионов и др.). Электропроводность (L) является величиной, обратной электрическому сопротивлению (R).При подаче на объект разности потенциалов (U) через него потечет электрический ток силой (I), величина которой пропорциональна электропроводности (L):

I = L • U или I = U / R.Величина электропроводности зависит от количества электрических зарядов и их подвижности. Чем больше количество зарядов и их подвижность, тем больше электропроводность.Вещества по отношению к постоянному току делят на проводники и диэлектрики. Проводники электрические – вещества, хорошо проводящие электрический ток благодаря наличию в них большого количества подвижных заряженных частиц. Они делятся на электронные (металлы), ионные (электролиты) и смешанные, где имеет место движение как электронов, так и ионов (например, плазма). Диэлектрики – твердые, жидкие и газообразные вещества, очень плохо проводящие электрический ток. Удельное сопротивление постоянному току у них составляет 108-1017 Ом • см. Особое место занимают полупроводники – вещества, электропроводность которых при обычных условиях весьма низка, но она резко возрастает с температурой. На их электропроводность влияют и другие внешние воздействия: свет, сильное электрическое поле, поток быстрых частиц и др.

Электропроводность живых тканей определяется концентрацией ионов и их подвижностью, которые весьма неодинаковы в различных тканях, в связи с чем биологические объекты обладают свойствами как проводников, так и диэлектриков. Удельная электропроводность целых органов и тканей существенно меньше, чем составляющих их сред. Ее наибольшие величины (0,6-2,0 См • м-1) имеют жидкие среды организма (кровь, лимфа, желчь, моча, спинно-мозговая жидкость), а также мышечная ткань (0,2 См • м-1). Напротив, удельная электропроводность костной, жировой, нервной ткани, а в особенности грубоволокнистой соединительной ткани и зубной эмали чрезвычайно низкая (10-3-10-6 См • м-1).