Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КОМБИ+РС_матем_2012.doc
Скачиваний:
29
Добавлен:
14.08.2019
Размер:
1.46 Mб
Скачать

§ 7. Примеры решения простейших комбинаторных задач

Подытожим сведения об изученных комбинаторных объектах и их числовых характеристиках в следующей таблице:

Название

Обозначение

Количество

размещение

As

размещение с

повторениями

(b1 ; … ; bs) As

перестановка

An, as at при s t

Pn = n !

перестановка c

повторениями

a1 – k1 раз, … , an – kn раз

подмножество

{ }, as at при s t

|B(A)| = 2n

сочетание

{ }, as at при s t

сочетание с

повторениями

  1. На флагштоке поднимается сигнал, содержащий 1, 2 или 3 различных флага из стандартного набора, содержащего 3 флага. Сколько различных сигналов получится (порядок флагов учитывается) ?

Ответ: 15.

Решение. Из одного флага – 3 сигнала, из двух и из трёх флагов – по 6 сигналов. Далее – принцип сложения.

  1. В магазине есть 7 разных видов чашек и 5 различных видов блюдец. Сколькими способами можно купить чашку с блюдцем ?

Ответ: 35-ю способами.

Решение. Типичная задача на принцип умножения. Представим себе, что из города A в город B ведут 7 дорог, на каждой из которых продают разные виды чашек. А из города B в город C ведут 5 дорог, на каждой из которых продают один вид блюдец. Таким образом, чайный набор покупается при проезде из A в C, что можно сделать 35-ю способами.

  1. Монета бросается 10 раз и получается набор длины 10 из выпавших результатов: орёл или решка. Сколько различных наборов с четырьмя орлами получится ?

Ответ: = 1260.

  1. Сколько слов (произвольных последовательностей) длины 1000 можно составить из букв русского алфавита ?

Ответ: 331000 .

Решение. В русском алфавите 33 буквы. Так что .

  1. Простейшая молекула белка, как утверждают учёные-биологи, представляет собой последовательность длины 50 из основных 20-ти аминокислот. Оцените, сколько лет потребуется, чтобы перебрать все возможные комбинации таких последовательностей, если в каждом кубическом миллиметре шарового слоя Земли высоты 10 км. за одну секунду осуществляется независимый перебор 1000000 вариантов ?

Ответ: более 10 21 лет.

Р ешение. Всего последовательностей длины 50 из 20 аминокислот будет 2050 = 250·1050 .

Объём шара V = ··R3 , поэтому объём шарового слоя высоты h вычисляется так: Vh = ··[(R + h)3R3]. Учитывая, что радиус Земли примерно равен 6400 км., получим объём рассматриваемого в задаче шарового слоя

··[64103 – 64003] = ··106·[64,13 – 643] =

= ··106·[0,1·(64,12 + 64,1·64 + 642)]

··105·3·64,12 < 4·4·105·1002 < 1011 (км3).

Далее, 1 км3 = 109 м3 = 109·106 см3 = 1015·103 мм3 . Значит, объём рассматриваемого шарового слоя меньше 1029 мм3.

Даже, если перебор комбинаций будет вестись в 1029 мм3, то одному из этих кубических миллиметров нужно перебрать не менее = 250·1021 1015·1021 = 1036 комбинаций.

В одном году менее 60·60·24·366 < 100·100·100·1000 = 109 секунд. Значит, понадобится более = 1027 лет. Учитывая, что в каждую секунду производится перебор 106 вариантов, время перебора сокращается до 10 21 лет.

А как же возраст Вселенной, оцениваемый учёными-астрофизиками в 20 миллиардов лет (20·109 = 2·1010 лет) ?! Могла ли случайная эволюция за это время создать не только простейшую молекулу белка, но и гораздо более сложные структуры ? Например, геном человека, как утверждают те же учёные-биологи, является последовательностью из  25000 генов, а каждый ген сам обладает сложной структурой ! Думайте сами, решайте сами…

  1. Каждую клетку таблицы 33 можно раскрасить в 3 цвета. Сколькими способами можно раскрасить таблицу, чтобы в ка­ж­дой строке и в каждом столбце встречались все три цвета ?

Ответ: 12.

Решение. Для определённости обозначим цвета клеток средней строки буквами б, с, к. Тогда нетрудно понять, что возможны только следующие два варианта раскраски таблицы:

к

б

с

с

к

б

б

с

к

б

с

к

с

к

б

к

б

с

Учитывая, что допускаются произвольные перестановки цветов, т.е. вместо порядка (б, с, к) можно рассматривать произвольный другой порядок – перестановку этих букв, получим 23 ! = 12 раскрасок.

  1. Сколько можно сшить трёхцветных флагов из полосок материи шести цветов, если флаги с одинаковыми цветами, но различными их расположениями считать разными ?

Ответ: = 120.

Решение. Типичная задача на размещения шести элементов по трём местам. А если не учитывать расположение полос ? Тогда = 20.

  1. В стране 30 городов, каждые два из которых соединены авиалиниями. Сколько всего авиалиний ?

Ответ: = 435.

Решение. Авиалиния определяется своими концами, т.е. произвольно выб­ранными двумя городами из 30. Число этих сочетаний равно = 435 .

  1. Игральный кубик бросают шесть раз. Сколько последовательностей из шести результатов бросаний содержат хотя бы одну шестёрку ?

Ответ: 21031.

Решение. Проще вычислить, в скольких случаях совсем нет шестёрки. Это произойдёт в 56 случаях из общего числа 66 случаев. Таким образом, хотя бы одна шестёрка выпадает в 66 – 56 = (62)3 – (52)3 = (62–52)(64+6252+54) = = 11((62+52)2–6252) = 11(61+30)(61–30) = 119131 = 91341 = 90341+341= = 30690 + 341= 31031 случаях.

  1. Сколько четырёхзначных чисел можно составить из цифр 0, 3, 5, 8 (цифры не повторяются) ?

Ответ: 18.

Решение. P4P3 = 4 ! – 3 ! = 18 (учесть, что 0 не может быть старшей цифрой).

Замечание. Если цифры могут повторяться, то получится 3·43 = 192 числа. Если исключать число 0 = 0000, то останется 191 число.

  1. У математика 7 книг, а у поэта – 9. Сколькими способами можно обменять две математические книги на четыре поэтических ?

Ответ: 15876.

Решение. Правило умножения: = 21756 = 15876.

  1. Сколько различных (в том числе и бессмысленных) слов можно составить из букв слов ТИГР, ПАРА.

Ответ: 24, 12.

Решение. Для слова ТИГР, в котором нет одинаковых букв, ответ 4! = 24. Для слова ПАРА – = 12: ПАРА, ПРАА, ПААР, АПРА, АРПА, ААРП, АПАР, ААПР, АРАП, РПАА, РАПА, РААП. Здесь две буквы А можно менять местами, поэтому и делим на количество перестановок на двух символах.

Для слова ПАРАЛЛЕЛОГРАММ, в котором три буквы А и Л, по две буквы Р и М аналогично получим = 605404800.

  1. Сколько всего результатов бросания трёх одинаковых игральных костей ?

Ответ: 56.

Решение. Сочетания с повторениями: результат бросания представляет собой набор , где . Поэтому количество результатов равно .

  1. Карточная колода из 52 карт раздаётся 4-м игрокам: вначале 13 карт первому, потом – 13 карт второму, и т.д. В скольких случаях каждому из игроков будет роздано по тузу ?

Ответ: 134 12!4! .

Решение. Рассматриваем колоду как слово из 52 различных букв. Если один из тузов, например, туз червей (Ч), попал в первые 13 букв, то он может оказаться на любой позиции с 1-й по 13-ю, а на остальных позициях могут участвовать все буквы, кроме тузов, без повторений, т.е. . Всего вариантов (по принципу сложения) 13 .

Для второго игрока и туза бубён (Б) ситуация аналогична, только уже нельзя использовать карты первого игрока: количество вариантов 13 . Для третьего и туза пик (П) 13 , а для четвёртого и трефового туза (Т) 13 = 1312! .

По принципу умножения получаем 134 12! . В этих вычислениях был фиксирован порядок тузов: (Ч, Б, П, Т). Ясно, что возможны любые перестановки. Так что ответ: 134 12!4! .

  1. Сколько существует автобусных билетов с шестизначными номерами, в которых участвуют только цифры 3, 5, 7, и сумма цифр которых делится на 3 ?

Ответ: 213.

Решение. Общее число автобусных билетов с цифрами 3, 5, 7 подсчитать легко: это просто = 36. Какие из номеров билетов делятся на 3 ? Те, сумма цифр которых делится на 3. Цифру 3 при этом, очевидно, можно не учитывать. Если в номере участвуют k пятёрок и m семёрок, то их сумма k5+m7 = k(5+7)+(mk)7 делится на 3 тогда и только тогда, когда делится на 3 разность mk. Можно перечислить все варианты:

троек

пятёрок

семёрок

число билетов

6

0

0

1

0

6

0

1

0

0

6

1

3

3

0

= 20

3

0

3

= 20

0

3

3

= 20

4

1

1

2 = 30

1

4

1

= 15

1

1

4

= 15

2

2

2

= 156

Всего получается 1+2·20+2·1+30+2·15+90+20 = 213 билетов.

  1. Доказать равенство .

Решение. По формуле бинома Ньютона имеем

Отсюда . С другой стороны, как было отмечено выше, . Сравнивая коэффициенты при одинаковых степенях x, получим требуемое равенство.

  1. Вычислить сумму “арифмо-геометрической” прогрессии

1 + 2q + 3q2 + … + (n+1)qn .

Ответ: при q = 1, при q 1.

Решение. Дифференцируя формулу суммы геометрической прогрессии

1 + x + … + xn+1 = (x 1),

получим 1+2x+…+(n+1)xn = .

Для правильной записи ответа нужно учесть случай q = 1.