Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по техническим 1-7.docx
Скачиваний:
8
Добавлен:
08.08.2019
Размер:
42.46 Кб
Скачать

7.Микропроцессорные средства измерений, их структура, основные виды и другие характеристики

Микропроцессорные измерительные средства (МИС) развивают архитектуру персональных компьютеров с матема-техники. Метрологические средства по критериям эффективности оценивают компоненты информационного обеспечения с образцовыми мерами [18]. В соответствии с классической концепцией технологической интеграции, предполагающей наращивание числа элементов на единицу площади (объема) кристалла, преемниками СБИС должны стать сверх-(супер) СБИС. Однако интеграцияколичества не беспредельна, да и не всегда количество переходит в качество. Миниатюризация и повышение степени очистки кристалла в технологии развития СБИС достигли своего физического предела в области микроэлектроники. Технологияна следующем этапе развития СБИС не поспевает за стремительным взлетом микроэлектроники по пути информационно интеграции. По концепции информационной интеграции, предполагающей вычисление начальным этапом измерения, логичнопредположить интеграцию СБИС и функции измерения. Физически это означает, что кристалл СБИС достаточно заключитьв орнамент автоматических ИВВ, т.е. ко входу подсоединить аналого-цифровой преобразователь (АЦП), а на выходе СБИС установить цифроаналоговый преобразователь (ЦАП). Анализ технических решений показывает, что "аналоговые микро-процессоры" – СБИС в орнаменте АЦП – ЦАП – появились на потребительском рынке в 1982 г. (см. рис. 1.1). Более логичноэти кристаллы назвать микропроцессорными измерительными средствами (МИС), а при дальнейшем их совершенствованиипо пути к микроминиатюризации – микропроцессорными измерительными схемами. МИС как базисная структура микроэлектроники завершает свое становление в 1992 г. В соответствии с оценкой измерений по количеству и качеству МИС целесообразно разделить на три типа: средства для сравнения качества без количественной оценки – контроллеры (К); средстваизмерения количества без качественного сравнения – микропроцессорные измерительные приборы (МИП); средствадля определения качества с количественной оценкой – микропроцессорные аналитические приборы [16, 18]. Контроллеры предназначены для поддержания технологического процесса в заданном диапазоне. Регулирование процессом, а также качественная оценка осуществляются посредством сравнения контролируемого сигнала с мерой. Мера может быть задана аппаратными или программными средствами. Для задания и регистрации в цифровой форме уровня мерыконтроллеры снабжены диалоговыми ИВВ, а для контроля исследуемых параметров в них предусмотрены автоматические ИВВ. Управление процессом осуществляется по жесткой программе, что удобно в массовом производстве и поточных линиях, поэтому архитектура контроллера выбирается кольцевой или магистральной. Аппаратные средства контроллеров организуются на микропроцессорных сборках, калькуляторах или микроЭВМ. Программное обеспечение включает алгоритмы измерения и нормировки, контроля и управления. Контроллеры незаменимы в автономных системах и приборах индивидуального назначения. Контроллеры позволяют судить о качестве на уровне экспертных оценок: "да – нет", "плохо – хорошо", "холодно – горячо", "болен – здоров" и т.д.; при этом качество контролируется сравнением заданной меры в интервале с известным допуском [21]. Количественно физические процессы оценивают с помощью МИП. Они ориентированы на прямые измерения физических величин (напряжения, массы, времени, длины и т.д.) при контроле за их активными параметрами (амплитудой, часто-той, фазой, числом и т.д.). В отличие от контроллера на цифровых табло МИП выводится количественная информация исследуемой величины. Погрешность измерения МИП определяется в процессе калибровки по эталонам. Калибровочная характеристика в программе может быть задана таблицей или функциональной зависимостью и определена при поверке МИПна эталонных мерах по всему диапазону измерения. Аппаратные средства МИП используют число- или кодо-импульсные микропроцессы с программным управлением, организованным по кольцевой, магистральной или шинной архитектуре. Программное обеспечение кроме контроллерных программ содержит программы калибровки и коррекции, поверки и диагностики. Настройка МИП на исследуемый диапазон осуществляется оптимизационными алгоритмами адаптации. Аппаратные средства и программное обеспечение повышения точности измерения и контроля называют метрологическими средствами. Очевидно, что по сравнению с контроллерами МИП содержит аппаратные средства более высокого уровня и более совершенное и развитое программное обеспечение [16, 25, 46, 69]. Микропроцессорным аналитическим приборам (МАП) присущи основные функции контроллеров и МИП. Измерение качественных характеристик в количественном выражении предполагает контроль качества состава и свойств веществ (т.е. косвенные и совокупные измерения), а также величин, прямые измерения которых невозможны. Неизмеримые параметрырассчитывают по формулам, связывающим их с измеряемыми величинами – откликами, возникающими в исследуемом объекте в процессе активного воздействия. Например, вязкость и плотность жидкости можно определить в процессе измеренияамплитуды и частоты колебаний ее поверхности на различных расстояниях от центра воздействия источника возмущений. МАП позволяют контролировать параметры физических, химических, биологических и других процессов в жидких, твердых и газообразных веществах. От других типов средств МАП отличает вычисление параметров по математическим моделям процесса измерения, которые составляют математическое обеспечение. Как видно, МАП – это совокупность аппаратных иметрологических средств с программным и математическим обеспечением для контроля качества и свойств веществ. Архитектура МАП может быть реализована как по однопроводной число-импульсной кольцевой, так и многоразрядной кодоимпульсной трехшинной структуре на базе микропроцессов и калькуляторов, микро- и миниЭВМ с программным и микропрограммным управлением [15, 16, 18].Таким образом, МИС посредством функции измерения упорядочили в информационном смысле и синтезировали какединое целое аппаратные и метрологические средства, программное и математическое обеспечение для контроля однород-ных величин. Комплексное определение разноименных характеристик – это следующий этап микроэлектроники на пути информационной интеграции