Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
43.Понижение давления насыщенного пара раствори....doc
Скачиваний:
4
Добавлен:
06.08.2019
Размер:
126.46 Кб
Скачать

Давление пара растворителя над раствором. Закон Рауля. Между жидкостью и ее насыщенным паром существует динамическое равновесие

жидкость↔ насыщенный пар,

т.е. число молекул жидкости, испаряющихся с поверхности, равно числу конденсирующихся молекул. Этому равновесию соответствует давление насыщенного пара растворителя над чистым растворителем    Нижний индекс (1) обозначает то, что свойство относится к растворителю; (2) – к растворенному веществу, а верхний индекс

 

 (о) указывает на то, что это свойство вещества в чистом состоянии;  в данном случае  это свойство чистого растворителя.  В 1882 г. французский ученый Рауль сформулировал закон, названный его именем: давление насыщенного пара растворителя над раствором пропорционально молярной доле растворителя:

                                                                                          (7.2)

               

Выражение для молярной массы растворенного вещества

                                                                 (7.5)

Следовательно, измеряя экспериментально давление насыщенного пара растворителя над раствором можно определить молярную массу растворенного вещества.

Температура замерзания и кипения растворов. Эбулиоскопия. Криоскопия. Понижение  давления насыщенного пара растворителя над раствором приводит к повышению температуры кипения и понижению температуры замерзания раствора по сравнению с чистым растворителем.

Согласно первому следствию из закона Рауля повышение температуры   кипения   и   понижение   температуры   замерзания растворов неэлектролитов прямо пропорционально моляльной концентрации растворенного вещества:

                                               ΔТкип.=ЕСm(2)                                            (7.6)

                                               ΔТзам..=KСm(2)                                          (7.7),

где Сm(2)Сm(2) – моляльная концентрация раствора; Е - эбулиоскопическая и  К – криоскопическая постоянные, соответствующие повышению температуры кипения и понижению температуры замерзания раствора с Сm(2)=1 моль/1000 г растворителя. Значения Е и К зависят только от природы растворителя (табл.7.1).

 

 

                     Согласно второму следствию из закона Рауля: эквимолекулрные количества различных неэлектролитов, растворенные в одинаковых количествах по массе одного и того же растворителя увеличивают температуру кипения или понижают температуру замерзания на одно и то же число градусов.

                Осмос. Закон Вант-Гоффа. Процесс самопроизвольного перехода растворителя

(диффузия) через полупроницаемую  мембрану, называемый  осмосом.

 

Давление,   которое   необходимо   приложить    к раствору, чтобы осмос прекратился, называется осмотическим давлением. Если давление, приложенное к более концентрированному раствору, больше осмотического, то растворитель будет переходить  из раствора в растворитель. Процесс носит название  обратный осмос и используется для очистки природных и  сточных вод, в частности, может  быть использован для водоподготовки в теплоэнергетике.

Зависимость осмотического давления от температуры и концентрации описывается уравнением:

                                             π = с(В)RT,                                              (7.11)                                      

где π – осмотическое давление; с(В) – молярная концентрация растворенного вещества, моль/л; R – универсальная газовая постоянная; T – температура, К.

                Закон Вант-Гоффа: осмотическое давление равно тому давлению,  которое оказывало бы растворенное вещество, если бы оно, находясь в газообразном состоянии при той же температуре, занимало тот же объем, который занимает раствор.

                Из закона Вант-Гоффа следует, что растворы различных неэлектролитов одинаковой концентрации, находящиеся при одинаковой температуре являются изотоническими, т.е. имеющими одинаковое осмотическое давление. 

Зако́ны Ра́уля — общее название открытых французским химиком Ф. М. Раулем в 1887 г. количественных закономерностей, описывающих некоторые коллигативные (зависящие от концентрации, но не от природы растворённого вещества) свойства растворов.

Содержание

 [убрать

  • 1 Первый закон Рауля

    • 1.1 Отклонения от закона Рауля

  • 2 Второй закон Рауля

    • 2.1 Понижение температуры кристаллизации растворов

    • 2.2 Повышение температуры кипения растворов

    • 2.3 Криоскопическая и эбулиоскопическая константы

  • 3 Растворы электролитов

  • 4 Литература

[Править] Первый закон Рауля

Первый закон Рауля связывает давление насыщенного пара над раствором с его составом; он формулируется следующим образом:

  • Парциальное давление насыщенного пара компонента раствора прямо пропорционально его мольной доле в растворе, причём коэффициент пропорциональности равен давлению насыщенного пара над чистым компонентом.

Для бинарного раствора, состоящего из компонентов А и В (компонент А считаем растворителем) удобнее использовать другую формулировку:

  • Относительное понижение парциального давления пара растворителя над раствором не зависит от природы растворённого вещества и равно его мольной доле в растворе.

На поверхности оказывается меньше способных испаряться молекул растворителя, ведь часть места занимает растворённое вещество.

Растворы, для которых выполняется закон Рауля, называются идеальными. Идеальными при любых концентрациях являются растворы, компоненты которых очень близки по физическим и химическим свойствам (оптические изомеры, гомологи и т. п.), и образование которых не сопровождается изменением объёма и выделением либо поглощением теплоты. В этом случае силы межмолекулярного взаимодействия между однородными и разнородными частицами примерно одинаковы, и образование раствора обусловлено лишь энтропийным фактором.

[Править] Отклонения от закона Рауля

Растворы, компоненты которых существенно различаются по физическим и химическим свойствам, подчиняются закону Рауля лишь в области очень малых концентраций; при больших концентрациях наблюдаются отклонения от закона Рауля. Случай, когда истинные парциальные давления паров над смесью больше, чем вычисленные по закону Рауля, называют положительными отклонениями. Противоположный случай, когда парциальные давления паров компонентов оказываются меньше вычисленных — отрицательные отклонения.

Причиной отклонений от закона Рауля является то обстоятельство, что однородные частицы взаимодействуют друг с другом иначе, чем разнородные (сильнее в случае положительных и слабее в случае отрицательных отклонений).

Реальные растворы с положительными отклонениями от закона Рауля образуются из чистых компонентов с поглощением теплоты (ΔНраств > 0); объём раствора оказывается больше, чем сумма исходных объёмов компонентов (ΔV > 0). Растворы с отрицательными отклонениями от закона Рауля образуются с выделением теплоты (ΔНраств < 0); объём раствора в этом случае будет меньше, чем сумма исходных объёмов компонентов (ΔV < 0).

[Править] Второй закон Рауля

Тот факт, что давление паров над раствором отличается от давления паров над чистым растворителем, существенно влияет на процессы кристаллизации и кипения. Из первого закона Рауля выводятся два следствия, касающиеся понижения температуры замерзания и повышения температуры кипения растворов, которые в объединённом виде известны как второй закон Рауля.

[Править] Понижение температуры кристаллизации растворов

Условием кристаллизации является равенство давления насыщенного пара растворителя над раствором давлению пара над твёрдым растворителем. Поскольку давление пара растворителя над раствором всегда ниже, чем над чистым растворителем, это равенство всегда будет достигаться при температуре более низкой, чем температура замерзания растворителя. Так, океанская вода начинает замерзать при температуре около минус 2 °C.

Разность между температурой кристаллизации растворителя fr и температурой начала кристаллизации раствора Tfr есть понижение температуры кристаллизации.

  • Понижение температуры кристаллизации бесконечно разбавленных растворов не зависит от природы растворённого вещества и прямо пропорционально моляльной концентрации раствора.

Поскольку по мере кристаллизации растворителя из раствора концентрация последнего возрастает, растворы не имеют определённой температуры замерзания и кристаллизуются в некотором интервале температур.