Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Начерталка ОТВЕТЫ.rtf
Скачиваний:
0
Добавлен:
03.08.2019
Размер:
61.85 Кб
Скачать

Вопрос №11 Поверхность считается заданной на чертеже если:

Можно построить любую ее образующую;

По одной проекции точки, принадлежащей данной поверхности, можно построить ее вторую проекцию;

Относительно любой точки, заданной на том же чертеже, можно однозначно решить, принадлежит ли она поверхности или нет. В отличие от точек и линий, которые на комплексном чертеже задают своими проекциями, задание плоскости проекциями всех ее точек ненаглядно, т.к. получим два поля проекций (П1 и П2), между которым установлено некоторое соответствие. Этот способ задания поверхности не применяется в инженерной практике.

На чертежах в начертательной геометрии и инженерной графике поверхность задается проекциями точек и линий, определяющих ее однозначно или приближенно. Например, плоскость на чертеже можно задать проекциями трех ее точек и т.д. Поверхность земли на топографической карте приближенно задается каркасом своих горизонталей.

Метод задания поверхности каркасом линии называется каркасным.

Аналитический способ задания поверхности находит широкое применение в практике, особенно если требуется исследовать внутренние свойства поверхности. При проектировании поверхностей технических форм и их воспроизведении на станках с программным управлением используются совместно графические и аналитические способы задания поверхностей.

Поверхности рассматривают как множество точек и линий. Координаты точек этого множества удовлетворяют некоторому заданному уравнению вида F(x, y, z) = 0.

Алгебраической поверхностью n-го порядка называется поверхность, уравнение которой – алгебраическое уравнение степени n.

Поверхность называется транцедентальной, если ее уравнение – транцендентная функция относительно x, y, z. Плоскость выражается уравнением первой степени. Ее называют поверхностью первого порядка.

Графический способ задания кинематической поверхности предполагает задание на ортогональном чертеже элементов определителя поверхности – независимых условий, однозначно определяющих эту поверхность. Условиями, включенными в определитель поверхности могут быть также параметры формы. Поверхность задается проекциями элементов определителя: точками, прямыми плоскостями.

Принадлежность точки поверхности

При составлении алгоритма решения этой группы задач следует базироваться на свойстве (3) из § 38, т. е. для того чтобы на чертеже поверхности указать проекции принадлежащей ей точки, необходимо вначале построить проекции какой-либо линии, принадлежащей поверхности, а затем на этой линии отметить точку.

В качестве линии, как правило, выбирается образующая поверхности. Если поверхность может быть получена образующей различной формы, то предпочтение следует отдавать наиболее простым и удобным для построения линиям: окружностям для поверхностей вращения, прямым для линейчатых поверхностей (в частности, для плоскости целесообразно использовать линии уровня*).

В зависимости от положения плоскости по отношению к плоскостям проекций, сложность решения позиционной задачи, по определению линии пересечения ее с поверхностью существенно меняется. Наиболее простым представляется случай, когда плоскость проецирующая.

При построении линии пересечения двух поверхностей способом вспомогательных секущих плоскостей секущие плоскости, принятые в качестве посредников, могут быть и общего, и частного положения. Более широкое применение находят плоскости частного положения

Плоскости общего положения применяются в ограниченных случаях. Например, их удобно использовать при построении линии пересечения конических и цилиндрических, а также пирамидальных и призматических поверхностей общего вида, когда основания этих поверхностей расположены в одной и той же плоскости.

Решение задачи построения линии пересечения двух поверхностей способом вспомогательных секущих плоскостей рассмотрим на примере пересечения конуса вращения со сферой. В качестве поверхностей-посредников примем плоскости частного положения— горизонтального уровня. На рис. 132 сначала отметим очевидные общие точки А и В поверхностей в пересечении их главных меридианов f и 1-S-2, так как поверхности имеют общую фронтальную плоскость симметрии Ф(Ф1); f2^S2—S2 = А2(В2); A2Al(B2Bl) || S2S1, A2Al(B2Bl) ^f1 =A1(B1)

Эти опорные точки являются наивысшей А и наинизшей В точками линии пересечения, а также точками видимости линии на плоскости П2.

Брать вспомогательные фронтальные плоскости, параллельные П2, для построения следующих точек неудобно, так как они будут пересекать конус по гиперболам. Графические простые линии (окружности параллелей) на данных поверхностях получаются от пересечения их горизонтальными плоскостями уровня Г.

Первую такую вспомогательную плоскость Г1 берем на уровне экватора сферы И. Эта плоскость пересекает конус по параллели h1. В пересечении этих параллелей находятся точки видимости линии пересечения относительно плоскости П1:

h1^h11 = С1(D1); С1С2|| S1S2; С1С2 ^ h2(hl2) = C2(D2).

Если пересекающиеся поверхности вращения не имеют общей фронтальной плоскости симметрии (рис. 133), то самую высокую А и низкую В точки линии пересечения поверхности легко определить, построив изображения этих поверхностей на плоскости П4, параллельной осевой плоскости Sum (Sum1) данных поверхностей. Можно построить проекции всей линии пересечения в системе плоскостей П1_|_П4, а затем построить ее фронтальную проекцию в проекционной связи с горизонтальной проекцией, замеряя высоты точек на плоскости П4, так, как это показано на рис. 132 для точек А и В.