Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
15-16,18,20-21.doc
Скачиваний:
25
Добавлен:
01.08.2019
Размер:
137.73 Кб
Скачать

Уравнения электромагнитных волн

электрические заряды создают в пространстве электрические поля. Если заряды находятся в движении, то эти поля меняются во времени; кроме того, движущиеся заряды создают магнитные поля. Если движения зарядов являются колебательными, то и создаваемые зарядами поля также колеблются во времени и в пространстве, причем эти возмущения полей распространяются с конечной скоростью (скоростью света), то есть происходит распространение электромагнитных волн. Колебания зарядов в природе в большинстве случаев являются гармоническими, то есть синусоидальными, или близкими к синусоидальным.

Волновое уравнение описывает только волну, но никак не её источник.

Напишем основные уравнения электродинамики - уравнения Максвелла для области пространства, занятой волнами, где нет накаких источников - зарядов и токов

Для однородной и изотропной среды, не обладающей ферромагнитными и сегнетоэлектрическими свойствами (такая среда называется линейной, поскольку выполняется линейная связь между напряженностью и индукцией электрического и магнитного полей соответственно), получим:

эти уравнения приводятся к виду:

А это есть ни что иное, как волновые уравнения для векторов напряженности электрического и магнитного полей.

Особенность электромагнитных волн в том, что решения для E и H дают одну волну с двумя составляющими; кроме того, колеблющиеся величины - векторные.

Следствие из волновых уравнений:

В вакууме e = m = 1, откуда получаем результат, весьма озадачивший современников Максвелла: скорость распространения электромагнитных волн в вакууме есть константа, не зависящая от системы отсчета

из теории Максвелла следовало, что скорость распространения электромагнитных волн в любой инерциальной системе отсчета имеет одно и то же значение, равное скорости света в вакууме.

Опыты Герца и Лебедева:

Теория Максвелла не только предсказала существование электромагнитных волн, но и указала условия, необходимые для успеха опытов: достаточно высокая частота электрических колебаний и открытая форма цепи. Герц, предпринимая в 1888 г. свои известные опыты, постарался выполнить эти условия: он заменил колебательный контур прямолинейным вибратором.

Для возбуждения электрических колебаний в то время был известен только один способ — искровой разряд. На рис. 122 изображена схема соответствующего устройства (вибратор Герца). Вибратор 1 имеет посередине разрыв 2 — искровой промежуток, к концам которого подводится напряжение от повышающего трансформатора.

Рис. 122. Схема вибратора Герца

Рис. 123. Приемные вибратор и виток для опытов Герца

Для обнаружения волн Герц использовал второй вибратор с гораздо меньшей длиной искрового промежутка (доли миллиметра вместо 7,5 мм в излучающем вибраторе). Кроме такого приемного вибратора, применялся и Приемный виток, согнутый из проволоки в виде прямоугольника и тоже прерванный очень малым искровым промежутком (рис. 123). Под действием электромагнитной волны в этих приемниках возникают вынужденные колебания.

В своих опытах Герц осуществил получение электромагнитных волн и сумел воспроизвести с этими волнами все явления, типичные для любых волн: образование «тени» позади хорошо отражающих (металлических) предметов, Отражение от металлических листов, преломление в большой призме, сделанной из асфальта, образование стоячей волны в результате интерференции волны, падающей отвесно на металлический лист, со встречной волной, отраженной этим листом. Было исследовано также направление векторов Е и В электрического и магнитного полей б электромагнитных волнах; оказалось, что электромагнитные волны имеют такие же свойства, какие были известны у световых волн (поляризация, § 59).

Таким образом, опыты Герца подвели прочную основу под теорию Максвелла: электромагнитные волны, предсказанные максвелловской теорией (§ 55), оказались реализованными на опыте.

Выдающегося успеха в исследовании электромагнитных волн достиг русский физик Петр Николаевич Лебедев (1866—1912). В 1895 г. он получил с помощью вибраторов миллиметровых размеров волны длиной 6 мм, которые, как сам он писал, «...были ближе к более длинным волнам теплового спектра, чем к электрическим волнам, которыми вначале пользовался Герц...». С такими волнами Лебедев получил все «оптические» явления — интерференцию, поляризацию, отражение, преломление и даже двойное преломление в призме, вырезанной из кристаллической серы. Вся аппаратура, собственноручно сделанная Лебедевым для этих опытов, в особенности приемный вибратор, состоящий из двух кусочков проволоки длиной 3 мм с микроскопическим термоэлементом, впаянным между ними, представляет собой замечательный образец экспериментального искусства.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]