Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_APPOffice_Word (1).docx
Скачиваний:
6
Добавлен:
31.07.2019
Размер:
562.42 Кб
Скачать

19)Система автоматического управления

Под управлением технологическим процессом понимается совокупность операций, необходимых для осуществления таких це­лей, как пуск и остановка технологического процесса, поддержание какого-либо параметра процесса на заданном уровне, изменение па­раметра но заданной программе и т. п.

^Установку, машину, агрегат, в котором протекает исследуемый технологический процесс, называют объектом управления. Управление может быть ручным или автоматичес,к_имл' В первом случае операции управления осуществляет человек, а во втором—управляющее устройство. Сочетание объекта управления и управляющего устройства образует систему автоматического управления (САУ).

Параметры процесса, которые в той или иной степени характери­зуют его качество и изменяются под действием входных величин, будем называть выходными величинами или просто выхо­дами (жВых). Входные воздействия, которые нарушают заданный закон изменения выходных величин, будем называть возмущаю­щими воздействиями или просто возмущениями. Возму­щения можно подразделить на два вида: нагрузку (Н) и помехи (77).

Воздействие управляющего устройства на объект управления на­зывается управляющим воздействием (У). Оно также от: носится к входным воздействиям.

17.

18. Частотные критерии устойчивости:( Михайлова, Найквиста и т.Д)

Принцип аргумента: Пусть задано хар-е ур-е D(p)=anpn+ an-1pn-1+…+ a1p+ a0=0, Это уравнение можно записать через его корни D(p)= an(p-λ1) * (p- λ 2)*(p- λ 3)…(p- λ n)=0, λ 1, λ 2, λ 3, λ n – корни полинома D(p). Сделаем подстановку p=jω и перейдем в частотную область D(jω)= an(jω -λ1 ) * (jω - λ 2)*( jω - λ 3)…( jω - λ n)=0. Представим элементарный множитель (jω-λ i) в виде вектора на комплексной плоскости и рассмотрим его поведение при изменении частоты ω от -∞ до +∞.

Для корня с отриц. вещественной частью вектор jω-λi будет поворачиваться против часовой стрелки в положит. направлении на 1800. Обозначим этот разворот как приращение аргумента

элементарного вектора: ∆arg(jω-λi)=+π, ω(-∞;+∞). Для корня с положит. веществ. частью это приращение составит: ∆arg(jω-λi)=-π. Если система устойчива, то все n-корней лежат слева мнимой оси и приращение аргумента функции D(jω). ∆arg[D(jω)]=+π*n, (-∞;+∞). Если рассматривать только положит. значение частоты т.е ω(0,+∞) то приращение составит: ∆arg[D(jω)]=(π/2)*n. Критерий уст-ти Михайлова: Используя принцип аргумента исследуем поведение ф-ии D(jω) при изменении частоты ω(0;+∞). D(jω)=an(jω)n+ an-1(jω)n-1+…+ a1(jω)+ a0=R(ω)+jQ(ω). Для каждого значения частоты ω имеем вектор, который будет поворач. при изменении частоты. Траектория конца вектора назыв. траекторией годографа Михайлова. В соотв. с принципом аргумента можно сфор. кр. Михайлова: Def САУ будет устойчива если годограф функции D(jω) начинается на положительной вещественной полуоси и проходит послед. n-квадрантов нигде не нарушая порядок следоват. квадрантов и не обращаясь в 0.

Условие нахождения системы на границе устойчивости: D(jω)=0,при {R(∞)=0Q(∞)=0 D(p)= T022p3+T01p2+p+ КnK0, D(jω)=

T022(jω)3 +T01(jω)2+(jω)+ КnK0=(КnK0-T01ω2)- jω ( T022ω2 -1). {КnK0-T01ω2=0 T022ω2 –1, ω2= КnK0/T01, (T022nK0)/ T01=> Knкрит= T01/T022K0. Формулировка критерия Мих-ва может быть изменена:

Для устойчивой САУ годограф начин. на положит. веществ. полуоси и должен поочередно пересекать

мнимую и веществ. оси. Построим R(ω), Q(ω).

Вывод; для уст-й. САУ ф-ии R(ω) и Q(ω) должны по очереди пересек. ось абцисс, корни R и Q должны

чередоваться. Крит. уст-ви Найквиста: В отличии от ранее рассмот. крит. уст-ви. кот. опирались на соотв. исслед. системы хар-ки. Крит. Найквиста осн-н на анализе АФХ, КЧХ разом. системы по виду кот. судят об уст-ти замкн. системы. Причем АФХ может быть использ. как аналит. так и эксперим. Пусть имеем след. систему: Wз(p)=Wp(p)/1+Wp(p)

для систем 1-ой обрат. связью, Wp(p)=W1(p)*W1(p),Wp(p)=

М(р)/D(p) при (m≤n).Учитывая это получим Wз(p)= М(р)/(D(p)

+М(р))=М(р)/Dз(p).Устойчив.

замкнутой системы определ. хар-им ур-ем: Dз(p)=D(p)+М(p)=0. Ур-е анолог. годогр. Михайлова для замк-ой системы имеет вид: 1+ Wp(p)=0, 1+ Wp(jω)=0, Wp(jω)=-1. т.е крит. точка смещ. в т. с коорд.(-1; j0). Рассмот. повед. век-ра

1+Wp(jω)=F(jω)-вектор F(jω)=1+М(jω)/(D(jω)= Dз(jω)/D(jω). Применим принцип аргумента: ∆argF(jω)= ∆arg

Dз(jω)- ∆argD(jω). Чтобы замкн. система была устойч. необход. чтобы все корни Dз(jω) имели отриц. веществ. часть, но если корни слева, то тогда: ∆argDз(jω)=(П/2)*n. Пусть разомк. система не устойч. и имеет r-корней с положит. веществ. частью тогда: ∆argD(jω)=((n-r)*П/2)-r*П/2. и общее приращ. ф-и будет: ∆argF(jω)=((П/2)*n)-((n-r)*П/2)+r*П/2=(П/2)*2r. Получ. результат треб. для устойч. замк. САУ чтобы вектор F(jω) совершил r/2 оборотов в положит. направл. Def: замкн. САУ будет устой-ва если АФХ разом. сист. охватыв. точку с коорд.(-1; j0) r/2 раз, где r- число корней хар-ого ур-я раз. сист. с положит. веществ. частью. Если раз. сист. устой-ва т.е r=0, то фор-ка упрощ. Def: замк. САУ будет уст. Если АФХ раз. сист. неохват. т.(-1; j0).

Замк. САУ будет уст-м если АЧХ разом. сист. станет <1. раньше чем ФЧХ достигнет знач.

-П,φ(ω)=-П. Для ЛАЧХ: замкн. САУ будет уст. если ЛАЧХ

раз-ой сист. станет <0дБ, раньше чем ФЧХ достигнет знач. –П.

18. В зависимости от принадлежности источника энергии, при помощи которого создаётся управляющее воздействие, системы могут быть прямого и непрямого действия. В системах прямого действия используется энергия управляемого объекта. К ним относятся простейшие системы стабилизации (уровня, расхода, давления и т.п.), в которых воспринимающий элемент через рычажную систему непосредственно действует на исполнительный орган (заслонку, клапан и т.д.). В системах непрямого действия управляющее воздействие создаётся за счёт энергии дополнительного источника.

19. Понятие передаточной функции. Свойства преобразования Лапласа.

В ведем оператор или символ дифф-я: p=d/dt, тогда старшие производные будут d2/dt2=p2 … dn/dtn=pn, ∫dt=1/p подставим в уравнение an* ( dny (t) /dtn) + an-1*(dn-1y(t)/dtn-1)+…+ a1*(dy(t)/dt)+ a0 *y(t) = bm*(dmu(t)/dtm) + bm-1* (dm-1 u(t)/dtm-1)+…+ b1*(du(t)/dt)+ b0*u(t) (1) и получим an*pnY(p) + an-1*pn-1 Y(p) +…+ a1* pY(p)+ a0*Y(p) = bm*pmU(p) + bm-1* pm-1 U(p)+…+ b1* pU (p)+ b0*U(p) (2). Ур-е (1) назыв. оригиналом; Ур-е (2) назыв. операт. изображением. u(t) и y(t)- оригиналы входного и выходного сигналов; U(p) и Y(p)- их операторные изображения. Вынесем за скопку: [an*pn + an-1*pn-1 +…+ a1* p+ a0]*Y(p) = [bm*pm + bm-1* pm-1 +…+ b1* p+ b0]*U(p) (3) В начале это выглядело как простое упрощение записи диф. ур-я, но завсем этим стоит сложный математ. смысл и в частности метод интегральных интегральных преобразований Лапласа, Карсона, Фурье. Суть интегрального преобразования состоит в том, что оно ставит в соотв-ие некоторые ф-ии вещественной перем-ой f(t) называемой оригиналом, функцию комплексной переменной F(s) называемой изображением. Формула прямого интегрального преобразования Лапласа имеет вид: F(s)=L{f(t)}=∫f(t)*e-stdt, s=α + jδ – комплексная переменная оператора Лапласа. Если произвести преобразование Лапласа ур-я (1) при нулевых начальных условиях, то мы получим [an*sn + an-1*sn-1 +…+ a1* s+ a0]*Y(s) = [bm*sm + bm-1* sm-1 +…+ b1* s+ b0]*U(s) (4) Видим, что при нулевых начальных условиях изображение по Лапласу (4) и операт. изображение (3) и исходное диф. ур-е динамики (1) формально с точностью до обозначения совпадают. Достоинства метода интегрального преобразов. состоит в том что преобразутся не только ф-ии (оригин-ы в изобр-я), но и операции над ними дифф-е на умножение. В результате диф. ур-е приводится к алгебраическому виду. Из выражений (3) или (4) получают очень важную хар-ку назыв. передаточной фун-ей W(p) = Y(p)/U(p) = bm*pm + bm-1* pm-1 +…+ b1* p+ b0 /

an*pn + an-1*pn-1 +…+ a1* p+ a0. Def передат-я ф-я это есть отношение операторного изображения выходной величины к изображению входной величины. Y(p)=W(p)*U(p). П.Ф. связыв. вх. и вых. сигналы, но сама не содержит вход и выход сигналов. Св-ва П.Ф: 1) П.Ф. явл. дробной функцией. К(р)- входной оператор, D(p)- выходной оператор ( собств. оператор), характерестический полином. Он хар-ет свободное движение звена или системы. 2) Корни числителя К(р)=0, назыв. нулями П.Ф. Корни знаменателя D(p)=0, назыв. полюсами П.Ф. 3) Все коэфф. П.Ф. ai, bi, яв-ся вещественными числами. Не вещественные нули и полюса могут быть только парными комплексно сопряженными вел-ми. Св-ва преобразователей Лапласа: 1) Линейность L{Σfi(t)} = ΣL{fi(t)}= Σ Fi(s). L{a*f(t)}=a*L{f(t)} = a*F(s). 2) Изображение производной L{f’(t)} = s*

F(s)-f(-0). f(-0) – значение оригинала при подходе к т. t=0 слева. При нулевых начал. условиях: L{f’(t)}=s*F(s), L{f’’(t)}=s2*F(s) 3) Начальное значение оригинала при подходе к t=0 справа: f(+0)=lims→∞ s*F(s) 4) Конечное значение оригинала: limt→∞ f(t)= lims→∞ s*F(s) 5) Запаздывание аргумента: L{f(t-τ)}=F(s)es. Операторный метод и метод интегральных преобразований явл. инженерным методом решения дифф. ур-й. Если по диф. ур-ю найти передаточную фун-ю т.е (DY→ПФ)W(p), то умножив ее на изображение вход. воздействия найдем изображ-е решения диф. ур-я: W(p)*U(p)=Y(p). Изображ. вход. возд-я:

Чтобы найти оригинал y(t)- решение диф. ур-я необходимо выполнить обрат. преобраз-е Лапласа: y(t)=L-1{W(p)*U(p)}. Формула обрат. преобраз. Лапласа: f(t)=1/2Пj*∫

F(s)estds. Это контурный интеграл на комплексной плоскости. В инженерной практике обычно используют таблицы прямого и обратного преобразования Лапласа для набора различных ф-ий.

В случае сложной передаточной ф-ии ее следует разложить на простые дроби: Y(s) = K(s)/D(s) = (c1/s-s1)+ (c2/s-s2)+…+ (ci/(s+αi)20i2)+…

21. Измерительная система состоит из погружаемого элемента, капиллярного провода и трубчатой пружины в корпусе.

Данные элементы соединены в единое устройство, которое под давлением заполнено инертным газом. Изменение температуры влечёт изменение объема или внутреннего давления в погружаемом устройстве. Давление деформирует измерительную пружину, отклонение которой передается с помощью стрелочного механизма на стрелку. Колебания температуры окружающей среды могут не приниматься во внимание, так как для компенсации между стрелочным механизмом и измерительной пружиной встроен биметаллический элемент. В зависимости от применяемого рабочего вещества различают следующие манометрические термометры: - газовые (азот); - конденсационные (метилхлорид, спирт, этиловые эфир); - жидкостные (метилксилол, силиконовые жидкости, металлы с низкой точкой плавления); - ртутные со специальными наполнителями.

Электрический термометр (термометр сопротивления) (resistance thermometer) - электрический прибор, определяющий высоту подъема цементного раствора, установления места притока воды в скважину и затрубного движения жидкости, реже - для целей термокаротажа. Э.т. представляет собой мостик, два плеча которого являются сопротивлениями с очень малым, а два с большим температурным коэффициентом. 

23. качественные показатели систем

Принято использовать следующие стандартные показатели качества переходного процесса, отражѐнные на типичном графике 1 переходно-го процесса в следящей системе со ступенчатым задающим воздейст-вием (рис. 4.5.2):

 tпп - время переходного процес-са, по истечении которого от-клонение управляемой величи-

ны y(t) относительно заданного значения yзад по абсолютному значению становится (и остается в дальнейшем) меньше определенной заданной величины уст. Обычно принимается уст = yзад,  = 0.05. Время регулирования характеризует быстроту затухания переходного процесса.

 tу - время установления, промежуток времени, за который управляемая величина в первый раз достигает своего установившегося значения, характеризует скорость процесса управления.

 уст - установившаяся ошибка (статическая точность, уст = e(∞) =1- ууст.). Если уст=0, то сис-тема астатическая.

 σ% - относительное перерегулирование (σ = (ymax-yзад)/yзад). Обычно требуют, чтобы значение σ было менее 18%. Перерегулирование характеризует колебательные свойства процессов. При нулевом значении  процесс носит монотонный характер (график 2 на рис. 4.5.2), а при доста-точно больших  приближается к незатухающему колебательному движению.

 n - число колебаний за время переходного процесса (≤3шт.).

2

24) Существуют два вида установившихся (стационарных) режимов САУ: статический и динамический.

Статический стационарный режим характеризуется тем, что все внешние воздействия и параметры системы не меняются во времени (g(t)=x0=const, ).

Динамический стационарный режим – это режим, при котором приложенные к системе внешние воздействия (g(t), f(t)) изменяются по некоторому установившемуся закону, в результате чего в системе устанавливается режим вынужденного движения.

Критерием качества работы в стационарном режиме служат ошибки (t), вызываемые действием детерминированных задающих g(t) и возмущающих f(t) воздействий.

Ошибки статического и динамического стационарных режимов называют соответственно статическими и динамическими.

Медленно меняющиеся входные воздействия – это такие детерминированные сигналы, которые за время действия весовой функции практически не успевают изменяться.

Вычисление установившейся ошибки (статической и динамической) можно производить либо с использованием теоремы Лапласа о конечном значении оригинала, если входное воздействие g(t) задано явно и является аналитической функцией времени:

, (3.1)

либо используя коэффициенты ошибок, если входное воздействие задано неявно

, (3.2)

где – передаточная функция замкнутой системы по ошибке;

G(s) - изображение по Лапласу задающего воздействия g(t);

С0, С1, С2, - коэффициенты ошибок, являющиеся коэффициентами разложения функции Ф(s) в бесконечный степенной ряд

, (3.3)

где – максимальные значения скорости и ускорения задающего воздействия g(t).

Статическая ошибка при g(t)=1(t) согласно (2.1) равна

. (3.4)

Если на систему одновременно действуют и задающее g(t) и возмущающее f(t) воздействия, то статическая ошибка системы определяется как

, (3.5)

где согласно (3.4),

, (3.6)

– передаточная функция замкнутой системы по возмущению, равная . Здесь Wf(s) – передаточная функция участка цепи, заключенного между точкой приложения воздействия f(t) и выходной координатой x(t).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]