Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Жизнь на планетах СС.doc
Скачиваний:
1
Добавлен:
29.07.2019
Размер:
135.17 Кб
Скачать

Спектральный класс

Спектральный класс звезды указывает на температуру фотосферы, которая коррелирует с абсолютной массой (см. главная последовательность и диаграмма Герцшпрунга — Рассела). В настоящее время считаются подходящими для зарождения жизни следующие спектральные классы: начальный F или G и средний K. Это соответствует промежутку температур от чуть более 7000 °K до чуть более 4000 °K, солнце — звезда класса G2V с температурой поверхности 6000 °K идеально входит в эти границы. Звёзды также должны обладать рядом важных характеристик для жизнепригодности планет:

Они живут (не сходят с главной последовательности) по крайней мере несколько миллиардов лет, что даёт жизни шанс на появление и развитие. Более яркие звёзды классов O, B, и A обычно живут менее миллиарда лет, в исключительных случаях менее 10 миллионов лет.

Они испускают достаточное количество высокочастного ультрафиолетового излучения, чтобы вызвать важные атмосферные изменения, такие как: синтез органических соединений в ранней атмосфере и образование озонового слоя в более поздней. Но не так много, чтобы ионизация уничтожила зарождающуюся жизнь.

Расстояние от планеты до звезды должно быть достаточным, чтобы приливные силы не воздействовали на вращение вокруг оси, создавая спин-орбитальный резонанс (англ. tidal lock) и при этом вода могла оставаться жидкой (см. ниже стабильная обитаемая зона, системы красных карликов). Звёзды класса K могут длительное время поддерживать условия существования жизни, значительно превосходя солнце, но при этом орбиты планет должны находиться ближе к звезде, чем Земля, поэтому они будут испытывать большее влияние приливных сил.

Этот спектральный диапазон возможно подходит для 5-10 % всех звёзд в ближайшем окружении нашей галактики. Менее яркие звёзды классов K и M — красные карлики составляют подавляющие большинство звёзд во Вселенной, поэтому нерешенный вопрос о их жизнепригодности является одним из самых главных в данной области. Примечательно, что первая звезда, у которой обнаружили экзопланету Глизе 581 c, находящуюся в обитаемой зоне, была красный карлик. Эта планета, так называемая суперземля, потенциально может иметь жидкую воду. Возможный парниковый эффект может сделать её слишком горячей для существования жизни, однако благодаря ему следующая в системе планета Глизе 581 d может быть более вероятным кандидатом на наличие благоприятных условий для существования жизни, если конечно, тоже не выпадет из этого списка по причине приливного действия звезды, могущего заставить и её вращаться синхронно по орбите, поворачиваясь к звезде лишь одной стороной.

Стабильная обитаемая зона

Обитаемая зона — участок теоретически рассматриваемой ближайшей звезды, внутри которого может существовать жидкая вода. После источников энергии жидкая вода является наиболее важным ингредиентом для существования жизни, учитывая то, как неотъемлемо связана с водой жизнь на Земле. Это может оказывать влияние на водо-зависимые виды и если будет открыта жизнь, не требующая воды (например, на основе раствора жидкого аммиака), то это изменит представления об обитаемой зоне и существенно расширит её возможные размеры или понятие обитаемой зоны может быть вообще отброшено, как ограниченное.

Отмечается два фактора стабильности обитаемой зоны. Первый — это отсутствие больших изменений в течение времени. Конечно, светимость всех звезд с течением времени возрастает и Обитаемая зона с течением времени отодвигается дальше от звезды, но если это происходит слишком быстро, как в случае, например, со сверхмассивными звездами, то шанс, что на планетах внутри ОЗ, при её постоянном и быстром движении, возникнет жизнь, очень мал. Подсчет протяженности линии обитаемой зоны никогда не бывает простым, учитывается такая негативная обратная связь такая, как геохимический цикл углерода могущий компенсировать повышение светимости. Предположения, сделанные относительно атмосферных условий и геологии позволяют сделать вывод о столь же большом влиянии, оказываемом на развитие ОЗ, что и эволюция Солнца; предположительно, солнечная ОЗ могла значительно меняться.

Второй фактор — отсутствие сверхмассивных тел, как планеты — газовые гиганты, чье гравитационное воздействие могло бы оказывать разрушительное воздействие на окружающие тела и препятствовать образованию землеподобных планет. Масса пояса астероидов за орбитой Марса, к примеру, показывает, что отдельные тела из-за резонансного действия Юпитера не могут объединившись, образовать планету и появись такая планета на участке между Венерой и Марсом и Земля почти наверняка не смогла бы приобрести свой нынешний вид. Это дает основание предположить, что газовый гигант в обитаемой зоне при благоприятных условиях мог бы иметь обитаемые спутники.

Солнечная система является моделью, при которой внутренними являются планеты земной группы, а внешними — газовые гиганты, но открытия экзопланет показывают, что эта модель не является всеобщей для других звездных систем: многочисленные юпитероподобные планеты были найдены, в основном, во внутренних орбитах разрушая потенциал обитаемых зон. Однако, возможно, наши нынешние данные об экзопланетах искажены с уклоном к этому типу (большие планеты на внутренних орбитах) потому что они намного легче обнаруживаются; таким образом, ещё неизвестно, какой тип является нормальным, если он вообще тот, каким считается.