Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты 41-50.doc
Скачиваний:
4
Добавлен:
22.07.2019
Размер:
128 Кб
Скачать

Билет №41

Есть в лабах 2, стр 17. В инете не нашёл этого алгоритма….

Билет №42

Блок-схемы электрокардиографов представлены на рис. 1 а, б.

 

Рис. 1. Структурные схемы одноканальных электрокардиографов:

УБП - усилитель биопотенциалов; АЦП - аналого-цифровой преобразователь; МК - микроконтроллер; ПК - персональный компьютер; а - без УБП; б - с УБП

Усили́тель биопотенциа́лов (УБП) — электрофизиологический прибор, одна из разновидностей измерительного усилителя. Служит для усиления и регистрации электрической активности живых объектов.

Аналого-цифровой преобразователь — устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал).

Микроконтро́ллер (англ. Micro Controller Unit, MCU) — микросхема, предназначенная для управления электронными устройствами.

Виды электрокардиографов:

  • Автоматический трехканальный электрокардиограф (Если ежедневно необходимо записывать и монтировать большое число ЭКГ, то можно существенно уменьшить затраты труда персонала, применяя автоматические трехканальные электрокардиографы)

  • Электрокардиографы обрабатывающие сигналы на ЭВМ (Все более широко используется автоматический анализ ЭКГ на ЭВМ . Этот метод требует, чтобы сигнал ЭКГ от стандартных отведений последовательно передавался к ЭВМ с помощью соответствующих средств; при этом должна также передаваться дополнительная информация о пациенте.)

  • Электрокардиографические системы для испытаний под нагрузкой (Коронарная недостаточность часто не отражается в ЭКГ, если запись производится в состоянии покоя. В испытаниях с упражнениями на двух ступенях (Master test,two-step exercise test) на сердечно-сосудистую систему дается физиологическая нагрузка. Перед записью ЭКГ пациенту предлагают подниматься и спускаться по специальной паре ступеней высотой около 23 см. На этом же принципе основаны и испытания под нагрузкой, во время которых пациент идет с определенной скоростью по бегущей дорожке, наклон которой можно изменять.)

  • Непрерывная запись ЭКГ (Так как обычная ЭКГ представляет собой короткий отрезок записи сердечной деятельности, то аритмии, которые продолжаются короткое время и возникают случайно или только при определенных условиях (например, при эмоциональном стрессе) часто пропускаются. Метод непрерывной записи ЭКГ, который был впервые введен Норманом Холтером, дает возможность обнаружить аритмии такого вида.)

Билет №43

Колебательный контур- контур, состоящий из конденсатора емкостью С и катушки индуктивностью L. Колебательный контур называется идеальным, если в нем нет потерь энергии на нагревание соединительных проводов и проводов катушки( пренебрегают сопротивлением R, т.е в котором отсутствует сопротивление проводников), а следовательно, не происходит необратимых преобразований энергии. Реально таких идеальных контуров в природе и технике не существует. Это - идеализация, помогающая изучить явления, происходящие в контуре.

Процессы в колебательном контуре

Рассмотрим процессы, которые возникают в колебательном контуре.

После замыкания ключа под действием электрического поля конденсатора в цепи появится электрический ток, сила тока i которого будет увеличиваться с течением времени. Конденсатор в это время начнет разряжаться, т.к. электроны, создающие ток, (Напоминаю, что за направление тока принято направление движения положительных зарядов) уходят с отрицательной обкладки конденсатора и приходят на положительную. Вместе с зарядом q будет уменьшаться и напряжение u При увеличении силы тока через катушку возникнет ЭДС самоиндукции, препятствующая изменению силы тока. Вследствие этого, сила тока в колебательном контуре будет возрастать от нуля до некоторого максимального значения не мгновенно, а в течение некоторого промежутка времени, определяемого индуктивностью катушки.

Заряд конденсатора q уменьшается и в некоторый момент времени становится равным нулю (q = 0, u = 0), сила тока в катушке достигнет некоторого значения.

Без электрического поля конденсатора (и сопротивления) электроны, создающие ток, продолжают свое движение по инерции. При этом электроны, приходящие на нейтральную обкладку конденсатора, сообщают ей отрицательный заряд, электроны, уходящие с нейтральной обкладки, сообщают ей положительный заряд. На конденсаторе начинает появляться заряд q (и напряжение u), но противоположного знака, т.е. конденсатор перезаряжается. Теперь новое электрическое поле конденсатора препятствует движению электронов, поэтому сила тока i начинает убывать. Опять же это происходит не мгновенно, поскольку теперь ЭДС самоиндукции стремится скомпенсировать уменьшение тока и «поддерживает» его. А значение силы тока Im (в положении 3) оказывается максимальным значением силы тока в контуре.

Далее сила тока становится равной нулю, а заряд конденсатора достигнет максимального значения Qm (Um).

И снова под действием электрического поля конденсатора в цепи появится электрический ток, но направленный в противоположную сторону, сила тока i которого будет увеличиваться с течением времени. А конденсатор в это время будет разряжаться (см. рис. 2, положение 6)до нуля (см. рис. 2, положение 7). И так далее.

Так как заряд на конденсаторе q (и напряжение u) определяет его энергию электрического поля We а сила тока в катушке i — энергию магнитного поля Wm то вместе с изменениями заряда, напряжения и силы тока, будут изменяться и энергии.

Механизм образования электромагнитных волн. (какой-то бред, но ловчее ниче не нашёл!Щщсгн)

Электромагнитная волна образуется благодаря взаимной связи переменных электрических и магнитных полей: изменение одного поля приводит к появлению другого. Чем быстрее меняется со временем магнитная индукция, тем больше напряженность возникающего электрического поля. И в свою очередь, чем быстрее меняется напряженность электрического поля, тем больше магнитная индукция. Следовательно, для образования интенсивных электромагнитных волн необходимо создать электромагнитные колебания достаточно высокой частоты. При этом условии напряженность электрического поля и индукция магнитного поля будут меняться быстро.

Период собственных колебаний контура определится по формуле Томсона: 

  где,

L – индуктивность

C - ёмкость конденсатора

T - период колебания