Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материаловедение 1.doc
Скачиваний:
34
Добавлен:
27.04.2019
Размер:
728.58 Кб
Скачать

3. Различные типы твердых растворов

При охлаждении и кристаллизации образуются твердые растворы и промежуточные фазы.

Твердый раствор — это такая фаза, в которой атомы одного компонента размещаются в кристаллической решетке другого компонента. Твердый раствор сохраняет кристаллическую решетку основного компонента (или растворителя). В зависимости от того, в каких местах кристаллической решетки находятся атомы растворенного компонента, различают твердые растворы замещения и внедрения. На рис. 2.10. показаны различные типы твердых растворов.

Твердые растворы замещения образуются только металлами. Различают твердые растворы с неограниченной (или полной) и ограниченной растворимостью. Для полной растворимости двух или более элементов необходимо, чтобы они имели одинаковый тип кристаллической решетки, то есть были изоморфными, атомные размеры компонентов не должны отличаться более, чем на 15 %, а для железа, например, — 8 %. Растворимость зависит от валентности компонентов. Элементы с высокой валентностью лучше растворяются в элементах с низкой валентностью. Если для элементарной ячейки количество валентных электронов на один атом (или электронная концентрация) достигает критического значения, то наступает предельная растворимость компонентов: для ГЦК решетки критическая электронная концентрация равна 1,36, а О ЦК решетки — 1,48.

В связи с большим количеством ограничений для полной растворимости компонентов чаще встречаются твердые растворы замещения с ограниченной растворимостью. Твердые растворы замещения, также, как любые фазы переменного состава, обозначаются греческими буквами: ос, р, у, 6 и т. д.

Упорядоченные твердые растворы, для которых расположение атомов растворенного элемента в кристаллической решетке основного элемента имеет определенную закономерность, иногда обозначают химической формулой, например, Cu3Au или CuAu. Перестройка структуры твердого раствора при переходе от одного упорядоченного состояния в другое влияет на физические и механические свойства сплавов. При этом структурных изменений под микроскопом чаще всего не наблюдается. Упорядоченность может быть уменьшена или полностью устранена при пластической деформации.

Твердые растворы внедрения чаще всего образуются металлами переходных групп и неметаллами с малым атомным радиусом (г < 0,1 нм) — водородом, азотом, углеродом, бором. Размер внедряющегося атома должен быть меньше размера кристаллографической поры. В компактной ГЦК решетке cc-Fe растворимость углерода значительно больше (2,14 %), чем в ОЦК решетке cc-Fe (0,02 % по массе), так как размер ок-таэдрических пор в первом случае больше, чем во втором. Твердые растворы внедрения всегда являются растворами с ограниченной растворимостью. В сложных по составу сплавах возможно образование одновременно твердых растворов замещения и внедрения.

5

1. Наклеп

В процессе деформации пара движущихся дислокаций порождает сотни и сотни новых, в результате этого плотность дислокаций повышается, что и приводит к упрочнению (повышению предела прочности) - рис.4.

Рисунок 4. Изменение прочности в зависимости от плотности дислокаций (высокопрочная сталь)

Упрочнение металла под действием пластической деформации называется наклепом, или нагартовкой.

Пластическая деформация вносит существенные изменения в строение металла. Кристаллическая структура пластически деформированного металла характеризуется не только искажением кристаллической решетки, но и определенной ориентировкой зерен - текстурой.

Беспорядочно ориентированные кристаллы под действием деформации поворачиваются осями наибольшей прочности вдоль направления деформации (рис.5).

С увеличением деформации степень текстурованности возрастает и при больших степенях деформации достигает 100%, т.е. все зерна оказываются одинаково ориентированными.

Не следует думать, что в результате деформации зерно измельчается. В действительности оно только деформируется, сплющивается и из равноосного превращается в неравноосное (в виде лепешки, блина), сохраняя ту же площадь поперечного сечения.

1.Наклеп и рекристаллизация

Почти все стальные детали паровых котлов и турбин в процессе изготовления подвергаются обработке давлением: прокатке, ковке, штамповке, прессованию и т. д. В результате обработки металла давлением изменяются его форма и свойства.

Обработку металлов давлением принято делить на холодную и горячую.

Рассмотрим сначала изменение структуры и свойств металла при холодной обработке давлением. Примером холодной обработки давлением является гибка труб поверхностей нагрева котла и вальцовка обечаек барабанов из листов.

В процессе холодной пластической деформации происходят сдвиги внутри кристаллов металла по плоскостям наиболее плотной упаковки атомов и поворот отдельных зерен друг относительно друга. Механизм сдвигообразования был рассмотрен ранее. Взаимный поворот зерен возможен при больших пластических деформациях.

Пластическая деформация происходит не одновременно во всем объеме металла. Вначале деформируются благоприятно ориентированные относительно направления деформации зерна наиболее «мягкой» структурной составляющей. У незакаленной углеродистой стали пластическая деформация начинается с ферритных зерен, а затем уже распространяется на перлитные. В процессе пластической деформации включаются все зерна металла, когда остаточная деформация достигает 0,1—0,2%.

Пластическая деформация распространяется неравномерно по всему объему деформированной детали. Если снять внешнюю нагрузку, то между отдельными объемами, продеформированными до различной степени остаточной деформации, возникнут внутренние или остаточные напряжения. Складываясь в процессе эксплуатации с внешними активными нагрузками, они могут привести к преждевременному разрушению детали.

Как показывают опыты, с увеличением степени деформации в холодном состоянии плотность металла незначительно уменьшается. Накопление искажений кристаллической решетки приводит к увеличению среднего расстояния между атомами, и как следствие, — к уменьшению его плотности. При больших степенях пластической деформации плотность может уменьшиться вследствие образования трещин.

В результате пластической деформации происходит дробление блоков внутри зерен и дробление самих зерен на более мелкие. Зерна металла при пластической деформации вытягиваются и ориентируются вдоль направления пластического течения металла осями наибольшей прочности. Металл приобретает различные свойства вдоль и поперек направления пластической деформации. При больших степенях пластической деформации все зерна прак-тически одинаково ориентированы.

Количество дислокаций, вакансий и смещений в единице объема металла в связи с образованием плоскостей скольжения, дроблением блоков и зерен сильно возрастает. Пластическая деформация вызывает упрочнение металла — наклеп или иначе нагартовку. Одновременно с увеличением прочности при наклепе происходит снижение пластичности металла. На рис. 67, а показано, как влияет вытяжка на механические свойства низкоуглеродистой стали. Вытяжка представляет собой отношение длины после обработки давлением к первоначальной длине.

При пластическом деформировании происходит повышение предела прочности и предела текучести, но предел текучести возрастает быстрее. Способность металла воспринимать дальнейшую пластическую деформацию по мере увеличения вытяжки снижается. Твердость непрерывно увеличивается. При очень больших степенях пластической деформации в металле появляются трещины.

Упрочнение сопровождается накоплением остаточной энергии в металле. Пластическая деформация вызывает искажения решетки металла. Остаточная энергия складывается в основном из энергии отклонившихся из положения равновесия атомов. Упрочненное состояние неустойчиво.

Неустойчивая структура пластически деформированного металла стремится освободиться от искажений кристаллической решетки и запаса остаточной энергии и перейти в устойчивое состояние. Но при комнатной температуре подвижность атомов недостаточна для упорядочения строения кристаллической решетки.

При повышении температуры увеличивается подвижность атомов и происходят процессы, возвращающие металл в устойчивое состояние.

Нагрев приводит к снятию значительной части упругих искажений кристаллической решетки. Для этого требуются относительно небольшие перемещения атомов. Дальнейшее повышение температуры увеличивает еще больше подвижность атомов. Приобретают подвижность дислокации. В результате взаимодействия часть дислокаций исчезает, а часть концентрируется на отдельных участках по границам блоков. В пределах блоков металл приобретает совершенное состояние.

Снятие искажений кристаллической решетки при нагреве деформированного металла приводит к частичному возврату прежних механических свойств: прочность и твердость снижаются, а пластичность повышается. Этот процесс называется отдыхом или возвратом. Исходный до пластической деформации уровень прочности и пластичности в результате одного только возврата достигнут быть не может. Вытянутые и раздробленные зерна сохраняются.

Температура, вызывающая возврат чистого железа, составляет 300—400° С. Стали требуют несколько более высокого нагрева.

Дальнейшее повышение температуры вызывает зарождение новых зерен из обломков старых. Деформированная структура целиком заменяется новой. Вследствие этого происходит практически полное восстановление механических свойств деформированного металла (рис. 67, б). Этот процесс называется рекристаллизацией.

Для появления новых равноосных зерен из старых деформированных требуется подготовительный период. Затем новые зерна начинают расти за счет окружающих деформированных кристаллов. Постепенно новые равноосные кристаллы начинают соприкасаться друг с другом. Когда все деформированные кристаллы поглощены, процесс первичной рекристаллизации заканчивается.

Температура, при которой начинается первичная рекристаллизация, зависит от степени пластической деформации. Центры кристаллизации зарождаются в наиболее искаженных местах кристаллической решетки: в местах стыка обломков зерен, по линиям скольжения и т. п. Чем выше степень пластической дефор-мации, тем ниже температура, при которой начинается рекристаллизация.

Самая низкая температура, при которой обнаруживаются новые зерна, называется порогом рекристаллизации или температурой начала рекристаллизации.

А. А. Бочвар показал, что абсолютная температура порога рекристаллизации Трекр для чистых металлов связана простым соотношением с абсолютной температурой плавления ТПЛ.

Сплавы имеют относительно более высокие температуры рекристаллизации, чем чистые металлы. Для технически чистых металлов коэффициент а = 0,3-^0,4, для сплавов а = 0,6-^-0,7. В некоторых случаях температура рекристаллизации сплавов доходит до 0,8 Тпл. Чем выше температура рекристаллизации сплава, тем он прочнее при высоких температурах. В процессе возврата и рекристаллизации устраняются остаточные напряжения, возникшие при пластической деформации. Работоспособность деталей и конструкций вследствие устранения внутренних остаточных напряжений повышается.

Новые зерна, образовавшиеся при первичной рекристаллизации, неустойчивы. Поверхность зерна металла, так же как поверхность жидкости, обладает избыточной поверхностной энергией. При уменьшении площади раздела зерна уменьшается их свободная поверхностная энергия. Чем крупнее зерна, тем меньше общая поверхность раздела между ними. Поэтому зерна деформированного и рекристаллизованного металла начинают поглощать друг друга. Средний размер зерна увеличивается. Этот процесс называется вторичной или собирательной рекристаллизацией.

При вторичной рекристаллизации крупные зерна поглощают мелкие. По мере выравнивания размеров зер§н скорость вторичной рекристаллизации уменьшается и процесс постепенно прекращается.

Вторичная рекристаллизация может привести к образованию очень крупных кристаллов, если ей предшествовала пластическая деформация с критической степенью. Для большинства металлов критическая степень пластической деформации составляет 5— 10%. В углеродистой стали собирательная рекристаллизация происходит при температуре выше 700° С.

Рост зерна не всегда желателен. Сталь с крупным зерном обладает пониженной пластичностью при комнатной температуре. С точки зрения прочности при высокой температуре особенно нежелательно одновременное существование крупного и мелкого зерна. Трубы пароперегревателей с такой структурой обладают пониженной прочностью и разрушаются хрупко.

Для повышения пластичности металла после наклепа, полученного в результате пластической деформации, применяют рекри-сталлизационный отжиг. Промежуточному отжигу при вальцовке подвергают заготовки толстостенных обечаек барабанов паровых котлов. Обычно рекристаллизационный отжиг для ускорения процесса проводят при температурах выше температуры рекристаллизации. Так, если железо и низкоуглеродистые стали имеют порог рекристаллизации 450° С, то их подвергают рекристалдизацион-ному отжигу при 650—700° С.

Теперь можно дать более точно определение горячей и холодной обработки металлов давлением.

Холодную обработку металлов давлением проводят при температуре ниже температуры рекристаллизации. В процессе холодной обработки происходит наклеп.

Горячую обработку металлов давлением проводят при температуре выше температуры рекристаллизации. Пластическая деформация и в этом случае вызывает сдвиги и упрочнение, но упрочнение устраняется рекристаллизацией.

2. Рекристаллизация сплавов, влияние на структуру и свойства. Температура рекристаллизации по А.А. Бочвару.

Рекристаллизация – возвращение свойств в первоначальное состояние в процессе нагрева наклёпанного металла. Процессы: уменьшение количества дефектов, рост зерна (до исходного). А.А. Бочвар показал: Tр = a·TплК (в Кельвинах). Чем выше Tпл, тем выше Tр. Вольфрам, молибден – самые тугоплавкие Me. Если чистый Me - a » 0,2, механические смеси - a » 0,4, твёрдые растворы - a » 0,6, химические соединения - a » 0,8.

 

19. Диффузионные и бездиффузионные процессы в металлических сплавах, влияние на свойства.

Бездиффузионные характеризуются перемещением атомов в пределах элементарной ячейки крист. решётки, высокой скоростью. Диффузионные превращения характеризуются перемещением атомов на большие расстояния. Они ускоряются с повышением температуры. К таким процессам относят частичный расплав твёрдого раствора α1 → α2 +β.

 

20. Полиморфные превращения в сплавах. Влияние превращений на структуру и свойства.

Полиморфизм – свойство металла изменять свою кристаллическую решётку под влиянием внешних факторов (температура, давление). Feα Û Feγ. 42 металла имеют полиморфные превращения. Железо, титан, марганец, графит, алмаз, олово. Свойство используется при термической обработке.

Процесс разупрочнения металлов и сплавов происходит на стадии возврата и рекристаллизации, оказывает влияние на формирование структуры и свойств как в процессе высокотемпературной пластической деформации (в том числе и при ползучести), так и в результате отжига после холодной пластической деформации. Структура деформированного материала зависит от таких факторов как схема и условия деформации, ее степень, температура и скорость, кристаллическая структура, кристаллографическая ориентировка и химический состав материала, а также наличие нерастворимых примесей.

Основными параметрами первичной рекристаллизации являются температура начала (t H po C), скорость процесса (G см/сек) и эффективная энергия активизации процесса (Qэфф. ккал/г.град). Движущей силой первичной рекристаллизации является внутренняя объемная энергия, накопленная в процессе пластической деформации. С увеличением степени пластической деформации снижается температура начала рекристаллизации и увеличивается скорость процесса. В результате образуется мелкое зерно. Существенное влияние на рекристаллизацию оказывают нерастворимые примеси и легированные добавки, которые уменьшают скорость процесса и повышают (tНР). Скорость деформации также влияет на исходную структуру. С увеличением скорости увеличивается плотность дислокаций и степень упрочнения, при этом увеличиается скрытая (латентная) энергия, что ведет к увеличению скорости рекристаллизации и снижению (tНР).

В зависимости от степени пластической деформации процесс разупрочнения происходит рзличными механизмами. При небольших степенях деформации в металлах с высокой энергией дефекта упаковки (Э.Д.У), разупрочнение, как правило, происходит на стадии возврата (полигонизации). В металлах с низкой ЭДУ заметное разупрочнение наступает лишь с началом рекристаллизации. При больших степенях пластической деформации этот эффект менее выражен и разупрочнение в основном происходит на стадии рекристаллизации.

Таким образом, при выборе материалов для деталей машин, испытывающих различные нагрузки при различных, в том числе высоких температурах, необходимо учитывать, по возможности, факторы, оказывающие влияние на разупрочняющие процессы (полигонизация, рекристаллизация) с целью получения структуры и свойств материалов с высокими механическими и эксплуатационными свойствами.

7

1. Превращение переохлажденного аустенита ( распад аустенита)

При охлаждении стали с содержанием углерода 0,8% ниже А1 происходит растад аустенита с содержанием углерода 0,8% на феррит с содержанием 0% и цементит с с содержанием углерода 6,67%. В виду такой разницы содержание углерода в исходной образующейся фазе процесс распада носит диффузионный характер.

Движещей силой любого процесса является уменьшение свободной энергии системы. При температуре, равной А1 ( 727 0С ) скорость диффузии максимальна. Разность свободных энергий старых и новых фаз

равна 0. Поэтому процесс превращения аустенита в перлит при температуре А1 происходить не будет.

При переохлаждении до температуры 200 0С разность свободных энергий максимальна , а скорость диффузии атомов железа практически равна 0, следовательно при этой температуре скорость превращения также равна 0, т.е. скорость превращения переохлажденного аустенита в перлит определяется 2 факторами: разностью свободных энергий старой и новой фаз и скоростью диффузии. Максимальная скорость превращения достигается предварительным охлаждением аустенита до 500 –5500С.Эту зависимость можно представить в виде диаграммы изотермического превращения аустенита.

Линии начала и конца превращения напоминают букву С и называются С-образные кривые. Эта диаграмма распада переохлажденного аустенита для эвтектоидной стадии. Левее линии начала превращения находится область устойчивого состояния переохлажденного аустенита с минимальной устойчивостью при t=500-5500C. В зависимости от степени переохлаждения на диаграмме выделяют перлитную область (при переохлаждении в интервале А1 (5500С);бейнитную область (в интервале t (550 – М4);и мартенситную область при температуре переохлаждения ниже линии М4.

2. Аустенит*, одна из структурных составляющих железоуглеродистых сплавов, твёрдый раствор углерода (до 2%)и легирующих элементов в железе (см. Железо). А. получил название по имени английского учёного У. Робертса-Остена (W. Roberts-Austen, 1843-1902). Кристаллическая решётка - куб с центрированными гранями. А. немагнитен, плотность его больше, чем других структурных составляющих стали. В углеродистых сталях и чугунах А. устойчив выше 723оC. В процессе охлаждения стали А. превращается в другие структурные составляющие. В железоуглеродистых сплавах, содержащих никель, марганец, хром в значительных количествах, А. может полностью сохраниться после охлаждения до комнатной температуры (например, нержавеющие хромоникелевые стали). В зависимости от состава стали и условий охлаждения А. может сохраниться частично в углеродистых или легированных сталях (т. н. остаточный А.).

Учение о превращениях А. берёт начало с открытий Д. К. Чернова (1868), впервые указавшего на их связь с критическими точками стали. При охлаждении ниже этих точек образуются фазы с иным взаимным расположением атомов в кристаллической решётке и, в некоторых случаях, с измененным химическим составом. Различают три области превращений А. В верхнем районе температур (723-550оС) А. распадается с образованием перлита - эвтектоидной смеси, состоящей из перемежающихся пластин феррита (массовая концентрация углерода 0,02%) и цементита (концентрация углерода 6,7%). Перлитное превращение начинается после некоторой выдержки и при достаточном времени завершается полным распадом А. Ниже определенной температуры (Мн), зависящей от содержания углерода (для стали с 0,8% углерода около 240оC), происходит мартенситное превращение А. (см. Мартенсит). Оно состоит в закономерной перестройке кристаллической решётки, при которой атомы не обмениваются местами. В интервале температур 550оС - Мн происходит промежуточное (бейнитное) превращение А. Это превращение, как и перлитное, начинается после инкубационного периода и может быть подавлено быстрым охлаждением; оно, как и мартенситное, прекращается при постоянной температуре (некоторая часть А. сохраняется непревращённой) и сопровождается образованием характерного рельефа на поверхности шлифа. При промежуточном превращении упорядоченные перемещения металлических атомов сочетаются с диффузионным перераспределением атомов углерода в А. В результате образуется феррито-цементитная смесь, а часто и остаточный А. с измененным по сравнению со средним содержанием углерода. Цементит при промежуточном превращении может выделяться как из А. непосредственно, так и из пересыщенного углеродом феррита (см. Бейнит).

Превращение А. в сплавах с содержанием углерода св. 2%, в связи с наличием первичных образований цементита или графита, вызывает своеобразие получающихся структур (см. Чугун). Представление о кинетике превращений А. дают диаграммы, указывающие долю превратившегося А. в координатах температура - время. На диаграмме превращений легиров. А. четко разделены области перлитного (640-520оC) и промежуточного (480-300оC) превращений и имеется температурная зона высокой устойчивости А. (рис.). При перлитном превращении легированного А. во многих случаях образуется смесь феррита и специальных карбидов.

Рисунок Изотермическое превращение аустенита стали (диаграмма)

Легирующие элементы, за исключением кобальта, увеличивают продолжительность инкубационного периода перлитного превращения.

Закономерности превращений А. используют при разработке легированных сталей различного назначения процессов термической и термомехалической обработки. Диаграммы превращений А. позволяют устанавливать режимы отжига сталей, охлаждения изделий, изотермической закалки и т. д.

Лит.: Курдюмов Г. В., Явления закалки и отпуска стали, М., 1960; Энтин Р. И., Превращения аустенита в стали, М., 1960.