Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЖБК.docx
Скачиваний:
40
Добавлен:
25.04.2019
Размер:
16.92 Mб
Скачать

В46. Расчёт центрально-сжатых элементов каменной кладки

При центральном сжатии напряжения по сечению элемента распределяются равномерно. Разрушение таких элементов происходит в зависимости от их гибкости: коротких элементов — в результате исчерпания прочностных свойств кладки ( ), длинных элементов — в результате потери устойчивости при критических напряжениях ( ), меньших предела прочности кладки R .

Расчет прочности центрально-сжатых элементов каменных конструкций следует производить по формуле

, где N — расчетная продольная сила; m, — коэффициент, учитывающий влияние прогиба сжатых элементов на их несущую способность при длительной нагрузке; — коэффициент продольного изгиба; R — расчетное сопротивление кладки сжатию; А — площадь сечения элемента.

Коэффициент зависит от характеристики упругих свойств кладки а и гибкости элемента.

Коэфициент отражает влияние ползучести при длительном действии нагрузки:

Где - коэффициент, зависящий от гибкости элемента и принимается по таблице. - расчетная продольная сила от длительного действия нагрузки.

Подбор сечений центрально. сжатых неармированных элементов производят с помощью последовательных приближений. 3а даваясь маркой и видом камня и раствора по нормам, находят расчетные сопротивления камня сжатию. Приняв в первом приближении mg=1, =0,9, по формуле вычисляют размеры столба или стены. По найденным размерам определяют гибкость элемента, затем по табл. 11.4 и формуле уточняют значения т„и у и производят повторный расчет.

В47. Расчёт внецентренно-сжатых элементов каменной кладки

На внецентренное сжатие работают конструкции каменных зданий, в которых продольная сжимающая сила N приложена с эксцентриситетом. Опыты показывают, что характер напряженного состояния каменной кладки внецентренно сжатых элементов в основном зависит от эксцентриситета продольной силы e0. Пpи небольших эксцентриситетах все сечение сжато, эпюра напряжений имеет криволинейное очертание. По мере увеличения эксцентриситета сжимающие напряжения со стороны, удаленной от силы, уменьшаются, а затем меняют знак, т. е. на некоторой части сечения возникает растяжение. При достаточно больших эксцентриситетах даже при малых нагрузках напряжения в растянутой зоне элемента могут превысить предельное сопротивление кладки растяжению при изгибе и в растянутой зоне появятся горизонтальные трещины, распространяющиеся на некоторую глубину t (). После образования трещины продолжает работать под нагрузкой только часть сечения высотой h — t. Эксцентриситет приложения продольной силы N для этой части сечения оказывается уменьшенным на величину t/2, т. е. сечение работает в условиях, приближающихся к центральному сжатию. Поскольку сжимающие напряжения распределены по сечению неравномерно, временное сопротивление кладки сжатию достигается первоначально в краевых участках. Однако при этом несущая способность не исчерпывается, так как в наиболее нагруженных участках вследствие ползучести развиваются значительные деформации, и тогда включаются в работу менее загруженные участки сжатой зоны и тем самым повышают ее временное сопротивление по сравнению с временным сопротивлением при центральном сжатии. Это повышение учитывается при расчете коэффициентом , который для кирпичной кладки прямоугольного сечения находят из выражения ; при е=О (центральное сжатие) =1.

Вследствие сложности напряженного состояния внецентренно сжатых элементов при расчете их прочности исходят из эмпирических формул, основанных на следующих допущениях: растянутая зона, если она имеется, исключается из работы, напряжения в сжатой зоне считаются распределенными равномерно (рис. 12.3). С учетом гибкости, длительности действия нагрузки и эффекта обоймы расчетное условие имеет вид

, (12.3)

где N — расчетная продольная сила; R — расчетное сопротивление кладки сжатию; А, — площадь сжатой части сечения элемента при прямоугольной эпюре напряжений, определяемая из условия, что ее центр тяжести совпадает с точкой приложения продольной силы N.