Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
statika.docx
Скачиваний:
4
Добавлен:
24.04.2019
Размер:
172.78 Кб
Скачать

Аксиомы статики

Система сил, приложенная к телу или материальной точке, называется уравновешенной или эквивалентной нулю, если тело под действием этой системы находится в состоянии покоя или движения по инерции.

Не нарушая механического состояния тела, к нему можно приложить или отбросить уравновешенную систему сил.

О действии и противодействии. При всяком действии одного тела на другое со стороны другого тела имеется противодействие, такое же по величине, но противоположное по направлению.

О двух силах. Две силы, приложенные к одному и тому же телу, взаимно уравновешены (их действие эквивалентно нулю) тогда и только тогда, когда они равны по величине и действуют по одной прямой в противоположные стороны.

О равнодействующей. Равнодействующая двух сил, приложенных к одной точке, приложена к той же точке и равна диагонали параллелограмма, построенного на этих силах как сторонах.

Аксиома затвердевания. Если деформируемое тело находилось в равновесии, то оно будет находиться в равновесии и после его затвердевания.

Аксиома о связях. Механическое состояние системы не изменится, если освободить её от связей и приложить к точкам системы силы, равные действовавшим на них силам реакций связей.

Связи и реакции связей

Все законы и теоремы статики справедливы для свободного твердого тела. Все тела делятся на свободные и связанные. Свободные тела - тела, перемещение которых не ограничено. Связанные тела - тела, перемещение которых ограничено другими телами. Тела, ограничивающие перемещение других тел. называются связями. Силы, действующие от связей и препятствующие перемещению, называются Реакциями связей Реакция связи всегда направлена с той стороны, куда нельзя перемещаться. Всякое связанное тело можно представить свободным, если связи заменить их реакциями (принцип освобождения от связей). Все связи можно разделить на несколько типов: Связь - гладкая опора (без трения).

Р еакция опоры приложена в точке опоры и всегда направлена перпендикулярно опоре. Гибкая связь (нить, веревка, трос, цепь). Груз подвешен на двух нитях. Реакция нити направлена вдоль нити от тела, при этом нить может быть только растянута. Шарнирная опора. Шарнир допускает поворот вокруг точки закрепления. Различают два вида шарниров. Подвижный шарнир.  Стержень, закрепленный на шарнире, может поворачиваться вокруг шарнира, а точка крепления может перемещаться вдоль направляющей. Реакция подвижного шарнира направлена перпендикулярно опорной поверхности т.к. не допускается только перемещение поперек опорной поверхности Неподвижный шарнир. Точка крепления перемещаться не может. Стержень может свободно поворачиваться вокруг оси шарнира. Реакция такой опоры проходит через ось шарнира, но неизвестна по направлению. Ее принято изображать в виде двух составляющих: горизонтальной и вертикальной (Rx; Ry).

Равнодействующая системы сходящихся сил

Силы называются сходящимися, если линии действия всех сил, составляющих систему, пересекаются в одной точке.Теорема: Система сходящихся сил эквивалентна одной силе (равнодейству­ющей), которая равна сумме всех этих сил и проходит через точку пересечения их линий действия. Пусть задана система сходящихся сил F1, F2, F3, ..., Fn, при­ложенных к абсолютно твердому телу (рис. 2.1, а). Перенесем точки приложения сил по линиям их действия в точку пересечения этих линий (21, б). Получили сист сил, прил к одной точке. Она эквивалентна заданной. Сложим F1 и F2, получим их равнодействующую: R2=F1+F2. Сложим R2 с F3: R3=R2+F3=F1+F2+F3. Сложим F1+F2+F3+…+Fn=Rn=R=åFi. Ч.т.д. Вместо параллелограммов можно построить силовой многоугольник. Пусть система состоит из 4 сил (рис 2.2.). От конца вектора F1 отложим вектор F2. Вектор, соединяющий начало О и конец вектора F2, будет вектором R2. Далее отложим вектор F3 помещая его начало в конце вектора F2. Тогда мы получим вектор R8, идущий от точки О к концу вектора F3. Точно так же добавим вектор F4; при этом получим, что вектор, идущий от начала первого вектора F1 к концу вектора F4, является равнодействующей R. Такой пространственный многоугольник называется силовым. Если конец последней силы не совпадает с началом  первой силы, то силовой многоугольник наз разомкнутый. Если для нах равнодействующей исп прав геометр, то этот способ наз геометрическим.

Больше пользуются аналитическим способом для определения равнодействующей. Проек­ция суммы векторов на некоторую ось равна сумме проекций на ту же ось слагаемых векторов, получим Rx=åFkx=F1x+F2x+…+Fnx; Ry=åFky=F1y+F2y+…+Fny; Rz=åFkz=F1z+F2z+…+Fnz; где Fkx, Fky, Fkz– проекции силы Fkна оси, а Rx, Ry, Rz– проекции равнодействующей на те же оси. Проекции равнодействующей системы сходящихся сил на координатные оси равны алгебраическим суммам проекций этих сил на соответствующие оси. Модуль равнодействующей R равен: R=(Rx2+Ry2+Rz2)1/2. Направляющие косинусы равны: cos(x,R)=Rx/R, cos(y,R)=Ry/R, cos(z,R)=Rz/R. Если силы распол в пл-ти то всё аналогично, отсутствует ось Z.

Теорема о трех силах

Если под действием трех сил твердое тело находится в равновесии и линии действия двух сил пересекаются в одной точке, то все силы лежат в одной плоскости и их линии действия пересекаются в одной точке.

Пусть на твердое тело действует система трех сил F1, F2 и F3, причем линии действия первых двух пересекаются в точкеA (рис. 11, a). Согласно следствию из второй аксиомы, силы F1, F2 переносим в точку A(рис. 11, b). Следуя третьей аксиоме, с ложим их, заменив их одной силой, равной R=F1+F2. Таким образом, исходная система сил приведена к двум силам R и F3(рис. 11, c).

Тело находится в равновесии. Поэтому, по первой аксиоме силы R и F3 должны иметь общую линию действия. Это может быть только тогда, когда исходные три силы лежат в одной плоскости, а линии действия сил пересекаются в одной точке. Теорема доказана.

Теорема о трех силах позволяет в ряде задач найти линию действия неизвестной силы, приложенной к твердому телу

условия и уравнения системы сходящихся сил

(F1, F2, ... ,Fn)~R => для равновесия тела, находящегося под действием системы сходящихся сил, необходимо и достаточно, чтобы их равнодействующая равнялась нулю: R = 0. Следовательно, в силовом многоугольнике уравновешенной системы сходящихся сил конец последней силы должен совпадать с началом первой силы; в этом случае говорят, что силовой многоугольник замк­нут. Это условие исполь­зуется при графическом решении задач для плоских систем сил. Векторное равенство R=0 эквивалентно трем скалярным равен­ствам: Rx=åFkx=F1x+F2x+…+Fnx=0; Ry=åFky=F1y+F2y+…+Fny=0; Rz=åFkz=F1z+F2z+…+Fnz=0; где Fkx, Fky, Fkz– проекции силы Fk на оси, а Rx, Ry, Rz– проекции равнодействующей на те же оси. Т. е. для равновесия сходящейся системы сил необходимо и достаточно равенства нулю алгебраических сумм проекций всех сил данной си­стемы на каждую из координатных осей. Для плоской системы сил пропадает условие, связанное с осью Z. Условия равновесия позволяют проконтролировать, нахо­дится ли в равновесии заданная система сил.

6/ Cтатически определяемые и статические неопределяемые системы

 Если при рассмотрении заданной системы, находящейся в равновесном состоянии от действия заданных внешних нагрузок, все реакции в связях закрепления, а также внутренние усилия в ее элементах, можно определить только по методу сечений, без использования дополнительных условий, то такая система называется статически определимой.

        В реальной практике встречаются такие конструкции при рас­чете которых одних лишь уравнений равновесия оказывается недостаточно, в связи с чем требуется формулирование дополнительных уравнений, связанных с условиями деформирования конструкции.

        Системы, в которых количество наложенных связей больше, нежели число независимых уравнений равновесия, называются статически неопределимыми.

        По сравнению со статически определимыми системами, в статически неопределимых системах имеются дополнительные связи, которые называются лишними.

        Термин “лишние связи” является условным. Эти связи являются лишними с точки зрения расчетных предпосылок. В действительности эти связи создают дополнительные резервы для конструкций, как в плане обеспечения её жесткости, так и прочности.

        В общем случае под n-раз статически неопределимой системой понимается система, в которой число неизвестных внешних опорных реакций и внутренних усилий превышает число независимых и значащих уравнений равновесия на n единиц.

7/ Cложение параллельных сил

Равнодействующая двух параллельных противоположно направленных сил равна по модулю разности модулей этих сил, направлена в сторону большей силы и приложена в точке, делящей расстояние между точками приложения сил в отношении, обратном отношению сил.

8/ момент силы относительно центра и оси

Рассмотрим силу  , приложенную в точке А твердого тела (рис. 20). Допустим, что сила стремится повернуть тело вокруг центра О. Перпендикуляр h, опущенный из центра O на линию действия силы  , на­зывается плечом силы   от­носительно центра О. Так как точку приложения силы можно произвольно переме­щать вдоль линии действия, то, очевидно, вращательный эффект силы будет зависеть: 1) от модуля силы F и длины плеча h; 2) от поло­жения плоскости поворота ОАВ, проходящей через центр О и силу F; 3) от направления поворота к этой плоскости.

Рис.20

Моментом силы   относительно центра О называется величина, равная взятому с соответствующим знаком произведению модуля силы на длину плеча.

Момент силы   относительно центра О будем обозначать сим­волом m0(F). Следовательно,

Момент имеет знак плюс, если сила стремится повернуть тело вокруг центра О против хода ча­совой стрелки, и знак минус, - если по ходу часовой стрелки. Так, для силы  , изображенной на рис.20,а, момент относительно центра О имеет знак плюс, а для силы, показанной на рис.20,б, - знак ми­нус.

Отметим следующие свойства момента силы:

1) Момент силы не изменяется при переносе точки приложения силы вдоль ее линии действия.

2) Момент силы относительно центра О равен нулю только тогда, когда сила равна нулю или когда линия действия силы проходит через центр О (плечо равно нулю).

3) Момент силы численно выражается удвоенной площадью тре­угольника ОАВ (рис. 20,б)

Этот результат следует из того, что

Моментом силы относительно оси называют алгебраический момент проекции этой силы на плоскость, перпендикулярную оси, относительно точки пересечения плоскостью. Момент силы относительно оси считается положительным, если проекция силы на плоскость, перпендикулярно оси (проекция силы на плоскость является вектором), стремится вращать тело вокруг положительного направления оси

1. Момент силы относительно оси равен нулю, если сила параллельна оси. В этом случае равна нулю проекция силы на плоскость, перпендикулярную оси. 2. Момент силы относительно оси равен нулю, если линия действия силы пересекает эту ось. В этом случае линия действия силы на плоскость, перпендикулярную оси, проходит через точку пересечения оси с плоскостью и, следовательно, равно нулю плечо силы  п относительно точки О.

В обоих этих случаях ось и сила лежат в одной плоскости. Объединяя их, можно сказать, что момент силы относительно оси равен нулю, если сила и ось лежат в одной плоскости.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]