Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Кинематика криволинейного движения.docx
Скачиваний:
62
Добавлен:
22.04.2019
Размер:
2.44 Mб
Скачать

Теорема Нерста

Теорема Нернста (тепловая теорема Нернста) - утверждение, являющееся одной из формулировок третьего начала термодинамики, сформулированное Вальтером Нернстом в 1906 году как обобщение экспериментальных данных по термодинамике гальванических элементов.

Теорема Нернста утверждает, что всякий термодинамический процесс, протекающий при фиксированной температуре T в сколь угодно близкой к нулю,  , не должен сопровождаться изменением энтропии S, то есть изотерма T = 0 совпадает с предельной адиабатой S0.

Макс Планк в 1910 году сформулировал более жесткое утверждение: величина S0 была конечной и S0 = 0. В формулировке Планка теорема Нернста имеет вид начального (граничного или предельного) условия для системы дифференциальных уравнений определяющих энтропию: При выключении температуры,  , энтропия термодинамической системы также стремится к нулю: 

Параметрическая формула и распределение Больцмана

Молекулы любого газа находятся в постоянном потенциальном поле тяготения Земли. Тяготение с одной стороны и тепловое движение молекул с другой с другой, приводят к некоторому стационарному состоянию газа, при котором давление газа с высотой убывает. Пологая, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова, пусть на высоте h атмосферное давление равно P, тогда на высоте h + dh оно равно P + dP. При dh больше нуля dP должно быть меньше нуля, т.к. давление с высотой убывает.

Разность давлений P и P + dP равна весу газа, заключенного в объеме цилиндра высотой dh с основанием площадью 1 м2, тогда

P– (P + dP) = ρ⋅g⋅dh,

где ρ– плотность газа на высоте h, а изменение dh настолько мало, что плотность газа можно считать постоянной, тогда

dP = –ρ⋅g⋅dh  (1)

Из уравнения Менделеева-Клапейрона

Подставим в формулу (1), получим

С изменением высоты от h1 до h2 давление меняется от P1 до P2, тогда

Выражение (2) определяет параметрическую формулу. Если обозначить высоту относительно уровня моря, где давление считается нормальным, тогда выражение (2) можно записать в виде

При P = n⋅k⋅T

где n– концентрация молекул на высоте h. Принимая во внимание, что μ = m0⋅NA, R = k⋅NA, получим

m0⋅g⋅h– это есть потенциальная энергия, тогда

Выражение (5) определяет распределение Больцмана для внешнего потенциального поля. Из него следует, что при постоянной температуре плотность газа больше там, где меньше потенциальная энергия его молекул. Если частицы имеют одинаковую массу и находятся в состоянии хаотического теплового движения, то распределение Больцмана справедливо в любом внешнем потенциальном поле.

Распределение Максвелла Реальные газы

Реальный газ — газ, который не описывается уравнением состояния идеального газа Клапейрона — Менделеева.

Зависимости между его параметрами показывают, что молекулы в реальном газе взаимодействуют между собой и занимают определенный объём. Состояние реального газа часто на практике описывается обобщённым уравнением Менделеева — Клапейрона:

где p — давление; V - объем T — температура; Zr = Zr (p,T)  — коэффициент сжимаемости газа; m - масса; М —молярная масса; R — газовая постоянная.

Изотермы реального газа (схематично) Синие — изотермы при температуре ниже критической. Зелёные участки на них — метастабильные состояния. Участок левее точки F — нормальная жидкость. Точка F — точка кипения. Прямая FG — равновесие жидкой и газообразной фазы. Участок FA — перегретая жидкость. Участок F′A — растянутая жидкость (p<0). Участок AC — аналитическое продолжение изотермы, физически невозможен. Участок CG — переохлаждённый пар. Точка G — точка росы. Участок правее точки G — нормальный газ. Площади фигуры FAB и GCB равны. Красная — критическая изотерма. K — критическая точка. Голубые — сверхкритические изотермы