Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы 1-63.doc
Скачиваний:
12
Добавлен:
22.04.2019
Размер:
1.45 Mб
Скачать

Структура стека tcp/ip.

Структура протоколов TCP/IP приведена на рисунке 2.1. Протоколы TCP/IP делятся на 4 уровня.

Рис. 2.1. Стек TCP/IP

Самый нижний (уровень IV) соответствует физическому и канальному уровням модели OSI. Этот уровень в протоколах TCP/IP не регламентируется, но поддерживает все популярные стандарты физического и канального уровня: для локальных сетей это Ethernet, Token Ring, FDDI, Fast Ethernet, 100VG-AnyLAN, для глобальных сетей - протоколы соединений "точка-точка" SLIP и PPP, протоколы территориальных сетей с коммутацией пакетов X.25, frame relay. Физический уровень определяет характеристики аппаратного обеспечения необходимые, чтобы нести сигнал с данными. На этом уровне определяются такие характеристики, как уровни напряжения, число и расположение контактов в интерфейсах (разъемах) и др. Примеры стандартов, относящихся к физическому уровню: RS232C, V.35, стандарты для локальных сетей – такие, как IEEE 802.3. TCP/IP не определяет физических стандартов – он использует уже существующие.

Следующий уровень (уровень III) - это уровень межсетевого взаимодействия, который занимается передачей пакетов с использованием различных транспортных технологий локальных сетей, территориальных сетей, линий специальной связи и т. п. (пр-лы- IP, протоколы сбора маршрутной информации RIP и OSPF, протокол межсетевых управляющих сообщений ICMP).

Следующий уровень (уровень II) называется основным.(протоколы- управления передачей TCP, протокол дейтаграмм пользователя UDP). Протокол TCP обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования виртуальных соединений. Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом, как и IP, и выполняет только функции связующего звена между сетевым протоколом и многочисленными прикладными процессами

Верхний уровень (уровень I) называется прикладным.(протокол копирования файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, гипертекстовые сервисы доступа к удаленной информации, такие как WWW).

Рис. 5.5. Многоуровневая архитектура стека TCP/IP

  • Прикладной уровень объединяет все службы, предоставляемые системой пользовательским приложениям: традиционные сетевые службы типа telnet, FTP, TFTP, DNS, SNMP, а также сравнительно новые, такие, например, как протокол передачи гипертекстовой информации HTTP.

  • На основном уровне стека TCP/IP, называемом также транспортным, функционируют протоколы TCP и UDP. Протокол управления передачей TCP решает задачу обеспечения надежной информационной связи между двумя конечными узлами. Дейтаграммный протокол UDP используется как экономичное средство связи уровня межсетевого взаимодействия с прикладным уровнем.

  • Уровень межсетевого взаимодействия реализует концепцию коммутации пакетов в режиме без установления соединений. Основными протоколами этого уровня являются дейтаграммный протокол IP и протоколы маршрутизации (RIP, OSPF, BGP и др.). Вспомогательную роль выполняют протокол межсетевых управляющих сообщений ICMP, протокол группового управления IGMP и протокол разрешения адресов ARP.

  • Протоколы уровня сетевых интерфейсов обеспечивают интеграцию в составную сеть других сетей. Этот уровень не регламентируется, но поддерживает все популярные стандарты физического и канального уровней: для локальных сетей - Ethernet, Token Ring, FDDI и т. д., для глобальных сетей - Х.25, frame relay, PPP, ISDN и т. д.

18.Межсетевой уровень и протокол IP. Фрагментация.

Межсетевой протокол(IP)- дейтаграммный сетевой протокол без установления соединения. Его функции: фрагментация и сборка пакетов при прохождении через промежуточные сети, имеющие другие протоколы; маршрутизация; проверка контрольной суммы заголовка пакета (правильность передачи всего пакета проверяется на транспортном уровне, т.е. с помощью TCP, в оконечном узле); управление потоком - сброс дейтаграмм при превышении заданного времени жизни.

Цель межсетевого протокола

Протокол, который определяет ненадежной доставки без установления соединения, называется Межсетевым Протоколом, и обычно обозначается своими инициалами, IP.IP обеспечивает определение трех важных вещей. Во-первых, протокол IP определяет базовый элемент передачи данных, используемый во всем интернете TCP/IP. Во-вторых, программное обеспечение IP выполняет функцию маршрутизации, выбора пути, по которому будут передаваться данные. В-третьих, помимо точной, формальной спецификации форматов данных и функции маршрутизации, IP включает набор правил, которые воплощают в жизнь идею ненадежной доставки пакетов. Эти правила указывают, как ГВМ и шлюзам следует обрабатывать пакеты, как и когда следует генерировать сообщения об ошибках, и условия, при которых можно удалять пакеты. IP является такой фундаментальной частью, что интернет TCP/IP иногда называют технологией на основе IP.

Фрагментация дейтаграммы означает разделение ее на несколько частей. Каждая часть имеет точно такой же формат, как и исходная дейтаграмма. Фрагментация обычно осуществляется шлюзом где-либо на пути между отправителем дейтаграммы и ее истинным получателем. Шлюз принимает дейтаграмму из сети с большим МЕП(max ед. передачи) и должен передать ее по сети, в которой МЕП меньше, чем размер дейтаграммы. Рисунок 7.7 иллюстрирует результат фрагментации.

------------------------------------------------------------

| заголовок | данные1 \ данные2 \ данные3 |

| дейтаграммы | 600 октетов \ 600 октетов \200 октетов |

------------------------------------------------------------

(а)

------------------------------

|заголовок | данные1 | фрагмент 1(смещение 0)

|фрагмента 1 | |

------------------------------

------------------------------

|заголовок | данные2 | фрагмент 2(смещение 600)

|фрагмента 2 | |

------------------------------

-------------------------

|заголовок | данные3| фрагмент 3(смещение 1200)

|фрагмента 3 | |

-------------------------

(б)

Рисунок 7.7 (а) Исходная дейтаграмма. несущая 1400 октетов данных и (б) три фрагмента для сети с МЕП. равной 620. Заголовки 1 и 2 имеют установленный бит ЕЩЕ ФРАГМЕНТЫ. Смещения показаны в октетах, их нужно разделить на 8, чтобы получить значение, хранящееся в заголовках фрагментов.

Каждый фрагмент содержит заголовок дейтаграммы, который дублирует большую часть заголовка исходной дейтаграммы(кроме бита в поле ФЛАГИ, который показывает. что это фрагмент), и столько данных, сколько может содержать фрагмент, чтобы общая длина была меньше, чем МЕП сети, по которой он путешествует.

Структура дейтаграммы IP

Дейтаграмма - часть информации, передаваемая независимо от других частей одного и того же сообщения в вычислительных сетях с коммутацией пакетов. Дейтаграммы одного и того же сообщения могут передаваться в сети по разным маршрутам и поступать к адресату в произвольной последовательности, что может послужить причиной блокировок сети. На внутренних участках маршрута контроль правильности передачи не предусмотрен и надежность связи обеспечивается лишь контролем на оконечном узле.

Структура дейтаграммы в IP (в скобках указано число битов):

  • версия протокола IP (4);

  • длина заголовка (4);

  • тип сервиса (8);

  • общая длина (16);

  • идентификация (16) - порядковый номер дейтаграммы;

  • место фрагмента в дейтаграмме (16) - указывает номер фрагмента при фрагментации дейтаграммы в промежуточных сетях;

  • время жизни дейтаграммы в сети (8);

  • тип протокола (8);

  • контрольный код CRC заголовка (16);

  • адрес источника (32);

  • адрес назначения (32);

  • опции (32);

  • данные (не более 65356 байт).

От версии протокола зависит структура заголовка. Сделано это для возможности последующего внесения изменений. Например, предполагается вместо четырехбайтовых адресов установить в Internet в будущем шестибайтовые адреса.

В поле "Тип сервиса" отмечается приоритет (если приоритетность используется), можно указать одно из следующих требований: минимальная задержка, высокая надежность, низкая цена передачи данных.

Всего в сети одновременно может быть 216 = 65 тысяч дейтаграмм сообщения с разными идентификаторами, т.е. за отрезок времени, равный времени жизни дейтаграммы, может быть передано не более 216 дейтаграмм. Это один из факторов, ограничивающих пропускную способность сетей с протоколом IP. Действительно, при времени жизни в 120 с имеем предельную скорость 216/ 120 = 546 дейтаграмм в секунду, что при размере дейтаграммы до 65 тысяч байт дает ограничение скорости приблизительно в 300 Мбит/с (такое же значение одного из ограничений предельной скорости получено выше и для протокола ТСР).

Время жизни может измеряться как в единицах времени Т , так и в хопах Р (числом пройденных маршрутизаторов). В первом случае контроль ведется по записанному в заголовке значению Т, которое уменьшается на единицу каждую секунду. Во втором случае каждый маршрутизатор уменьшает число Р, записанное в поле "Время жизни", на единицу. При Т = 0 или при Р = 0 дейтаграмма сбрасывается.

Поле "Тип протокола" определяет структуру данных в дейтаграмме. Примерами протоколов могут служить UDP, SNA, IGP и т.п.

Поле "Опции" в настоящее время рассматривается как резервное.