Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 3. Изм..doc
Скачиваний:
28
Добавлен:
21.04.2019
Размер:
87.04 Кб
Скачать

Лекция 3. Измерения физических величин

3.1 Измерения физических величин и их классификация

3.2 Принципы, методы измерений

3.3. Методика выполнения измерений

3.1 Измерения физических величин и их классификация

Достоверность измерительной информации является основой для анализа, прогнозирования, планирования и управления производством в целом, способствует повышению эффективности учета сырья, готовой продукции и энергетических затрат, а также повышению качества готовой продукции.

Измерение - совокупность операций, выполняемых для определения количественного значения величины;

Измерение физической величины – совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения измеряемой величины с ее единицей и получение значения этой величины.

Объект измерения – реальный физический объект, свойства которого характеризуются одним или несколькими измеряемыми ФВ.

измерительная техника – совокупность технических средств, служащих для выполнения измерений.

Основной потребитель измерительной техники – промышленность. здесь измерительная техника является неотъемлемой частью технологического процесса, так как используется для получения информации о технологических режимах, определяющих ход процессов.

технологические измерения – совокупность измерительных устройств и методов измерений, используемых в технологических процессах.

Объект измерений тело (физическая система, процесс, явление и т. д.), которое характеризуется одной или несколькими измеряемыми или подлежащими измерению физическими величинами.

Качество измерений – это совокупность свойств, обусловливающих соответствие средств, метода, методики, условий измерений и состояния единства измерений требованиям измерительной задачи.

Измерения классифицируются по следующим признакам:

3.1.1 По зависимости измеряемой величины от времени на статические и динамические;

Статические измерения измерения физической величины, принимаемой в соответствии с измерительной задачей за постоянную на протяжении времени измерения (например, измерение размера детали при нормальной температуре).

Динамические измерения – измерения физической величины, размер которой изменяется с течением времени (например, измерение массовой доли воды в продукте в процессе сушки).

3.1.2 По способу получения результатов на прямые, косвенные, совокупные, совместные;

Прямое измерение – измерение, при котором искомое значение физической величины находят непосредственно из опытных данных. В процессе прямого измерения объект измерения приводится во взаимодействие со средством измерения и по показаниям последнего отсчитывают значение измеряемой величины. Примером прямых измерений могут служить измерения длины линейкой, массы с помощью весов, температуры стеклянным термометром и активной кислотности при помощи рН-метра и т. д.

К прямым измерениям относят измерения подавляющего большинства параметров химико-технологического процесса.

Косвенное измерение – измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, полученными прямым измерением.

Косвенные измерения применяют в двух случаях:

  • отсутствует измерительное средство для прямых измерений;

  • прямые измерения недостаточно точны.

При проведении химических анализов состава и свойств пищевых веществ широко применяются косвенные измерения. Примером косвенных измерений могут служить измерения плотности однородного тела по его массе и объему; определение массовой доли воды в рыбных продуктах методом высушивания при температуре 105 оС, сущность которого заключается в высушивании продукта до постоянной массы и определении массовой доли воды по формуле:

где М1 – масса бюксы с навеской до высушивания, г; М2 – масса бюксы с навеской после высушивания, г; М – масса навески.

Совокупные измерения измерения нескольких однородных величин, при которых искомые значения величин находят решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин (измерения, при которых масса отдельных гирь набора находится по известной массе одной из них и по результатам прямых сравнений масс различных сочетаний гирь).

Совместные измерения одновременные измерения двух или нескольких неодноименных величин для нахождения зависимости между ними (например, производимые одновременно измерения приращения длины образца в зависимости от изменений его температуры и определение коэффициента линейного расширения по формуле k= l/(l t)).

Совместные измерения практически не отличаются от косвенных.

3.1.3. По связи с объектом на контактные и бесконтактные, при который чувствительный элемент прибора приводится или не приводится в контакт с объектом измерения.

3.1.4. По условиям точности на равноточные и неравноточные.

Равноточные измерения ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях.

Неравноточные измерения – ряд измерений какой-либо величины, выполненных различными по точности средствами измерений и в разных условиях. Например, массовую долю воды в вяленой рыбе определяли двумя методами: сушкой при температуре 130 оС и на приборе ВЧ при температуре 150 оС, допустимая ошибка в первом случае +1 %, во втором – +0,5 %.

3.1.5 По числу измерений в ряду измерений на однократные и многократные.

Однократное измерение – измерения, выполненное один раз (измерение конкретного времени по часам).

Многократное измерение – измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений т.е. состоящее из ряда однократных измерений. Обычно многократными измерениями считаются те, которые производят больше трех раз. За результат многократных измерений обычно принимают среднее арифметическое значение отдельных измерений.

3.1.6. По метрологическому назначению на технические, метрологические;

Техническое измерение – измерение, выполненное при помощи рабочего средства измерений с целью контроля и управления научными экспериментами, контроля параметров изделий и т. д. (измерение температуры в коптильной печи, определение массовой доли жира в рыбе).

Метрологическое измерение – измерение, производимое при помощи эталона и образцовых средств измерений с целью введения новой единиц физической величины или передачи ее размера рабочим средствам измерений.

      1. По выражению результата измерений на абсолютные и относительные;

Абсолютное измерение – измерение, основанное на прямых измерениях одной или нескольких основных величин и на использовании физических констант. Например, измерение силы тяжести основано на измерении основной величины – массы (m) и использовании физической постоянной g: F = mg.

Относительное измерение – измерение, производимое с целью получения отношения величины к одноименной величине, играющей роль единицы, или измерения величины по отношению к одноименной величине, принятой за исходную. Например, измерение относительной влажности воздуха.

3.1.8. По сложившимся совокупностям измеряемых величин на электрические (сила тока, напряжение, мощность), механические (масса, количество изделий, усилия);, теплоэнергетические (температура, давление);, физические (плотность, вязкость, мутность); химические(состав, химические свойства, концентрация) , радиотехнические и т. д.

Анализ состояния измерений в пищевой промышленности позволил установить качественный и количественный состав парка измерительной техники, который характеризуется следующим соотношением (%):

– теплотехнические измерения – 50,7;

– механические измерения – 30,4;

– электроэнергетические – 12,1;

– физико-химические измерения – 6,2;

  • измерения времени и частоты – 0,6.