Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 2. ФВ.doc
Скачиваний:
25
Добавлен:
21.04.2019
Размер:
172.03 Кб
Скачать

Лекция 2. Физические величины. Единицы измерений

2.1 Физические величины и шкал

2.2 Единицы физических величины

2.3. Международная система единиц ( система СИ

2.4 Физические величины технологических процессов

производства продуктов питания

2.1 Физические величины и шкалы

Физическая величина – это свойство, общее в качественном отношении для многих физических объектов (физических систем, их состояний и происходящих в них процессов), но в количественном отношении индивидуальное для каждого из них.

Индивидуальное в количественном отношении следует понимать так, что одно и то же свойство для одного объекта может быть в определенное число раз больше или меньше, чем для другого.

Как правило, термин "физическая величина" применяется в отношении свойств или характеристик, которые можно оценить количественно. К физическим величинам относятся масса, длина, время, давление, температура и т. д. Все они определяют общие в качественном отношении физические свойства, количественные характеристики их могут быть различными.

Физические величины целесообразно различать на измеряемые и оцениваемые. Измеряемые ФВ могут быть выражены количественно в виде определенного числа установленных единиц измерения. Возможность введения и использования последних является важным отличительным признаком измеряемых ФВ.

Однако существуют такие свойства, как вкус, запах и т. д., для которых не могут быть введены единицы измерения. Такие величины могут быть оценены. Величины оценивают при помощи шкал.

По точности результата различают три вида значений физических величин: истинное, действительное, измеренное.

Истинное значение физической величины (истинное значение величины) – значение физической величины, которое в качественном и количественном отношениях идеальным образом отражало бы соответствующее свойство объекта.

К постулатам метрологии относят

  • Истинное значение определенной величины существует и оно постоянно

  • Истинное значение измеряемой величины отыскать невозможно.

Истинное значение физической величины может быть получено только в результате бесконечного процесса измерений с бесконечным совершенствованием методов и средств измерений. Для каждого уровня развития измерительной техники мы можем знать только действительное значение физической величины, которое применяется вместо истинного.

Действительное значение физической величины – значение физической величины, найденное экспериментальным путем и настолько близкое к истинному значению, что для поставленной измерительной задачи может его заменить. Характерным примером, иллюстрирующим развитие измерительной техники, является измерение времени. В свое время единицу времени – секунду определяли как 1/86400 часть средних солнечных суток с погрешностью 10-7. В настоящее время определяют секунду с погрешностью 10-14, т. е. на 7 порядков приблизились к истинному значению определения времени на эталонном уровне.

За действительное значение физической величины обычно принимают среднее арифметическое ряда значений величины, полученных при равноточных измерениях, или арифметическое среднее взвешенное при неравноточных измерениях.

Измеренное значение физической величины – значение физической величины, полученное с применением конкретной техники.

По видам явлений ФВ делят на следующие группы:

- вещественные, т.е. описывающие физические и физико-химические свойства веществ. Материалов и изделий из них. К ним относятся масса, плотность, и тп. Это ФВ пассивные, т.к. для их измерения необходимо использовать вспомогательные источники энергии, с помощью которых формируется сигнал измерительной информации.

  • энергетические – описывающие энергетические характеристики процессов преобразования, передачи и использования энергии ( энергия, напряжение, мощность. Эти величины активные. Они могут преобразованы в сигналы измерительной информации без использования вспомогательных источников энергии;

  • характеризующие протекания процессов времени. К этой группе относятся различного рода спектральные характеристики, корреляционные функции и др.

По степени условной зависимости от других величин ФВ делят на основные и производные

Основная физическая величина – физическая величина, входящая в систему величин и условно принятая в качестве не зависящей от других величин этой системы.

Выбор физических величин, принимаемых за основные, и их количество осуществляется произвольно. В качестве основных прежде всего были выбраны величины, характеризующие основные свойства материального мира: длина, масса, время. Остальные четыре основные физические величины выбраны таким образом, чтобы каждая из них представляла один из разделов физики: сила тока, термодинамическая температура, количество вещества, сила света.

Каждой основной физической величине системы величин присваивается символ в виде строчной буквы латинского или греческого алфавита: длина – L, масса – М, время – Т, сила электрического тока – I, температура – O, количество вещества – N, сила света – J. Эти символы входят в название системы физических величин. Так, система физических величин механики, основными величинами которой являются длина, масса и время, называется "система LMT".

Производная физическая величина – физическая величина, входящая в систему величин и определяемая через основные величины этой системы.

По наличию размерности ФВ делят на размерные и безразмерные.

В тех случаях, когда необходимо подчеркнуть, что имеется в виду количественное содержание физической величины в данном объекте, следует употреблять слово размер.

Размер физической величины (размер величины) – количественное содержание в данном объекте свойства, соответствующего понятию "физическая величина".

Значение физической величины Q (значение величины) – оценка физической величины в виде некоторого числа принятых для нее единиц. Значение физической величины получают в результате измерения или вычисления, например: 12 кг – значение массы тела.

Отвлеченное число, входящее в значение физической величины, называется ее числовым значением.

Между размером и значением величины существует принципиальное различие. Размер величины не зависит от того, знаем мы его или нет. Выразить же размер мы можем при помощи любой из единиц данной величины и числового значения (кроме единицы массы – кг, можно использовать, например, г). Размеры разных единиц одной и той же величины различны. Например:

Физическая величина

Значение величины

Числовое значение

Масса трубы

5 т

5000 кг

5

5000

Давление пара

1106 Па

10 бар

1106

10

Взаимосвязь между основными и производными величинами системы выражают с помощью у dimQ равнений размерности.

Размерность физической величины dimQ – выражение в форме степенного одночлена, которое отражает связь величины с основными единицами системы и в котором коэффициент пропорциональности принят равным единице. Размерность величины представляет собой произведение основных физических величин, возведенных в соответствующие степени:

dimQ = LαMβNγIη,

где L, M, N, I –условные обозначения основных ФВ, а α, β, γ, η – вещественные числа.

Понятие "размерность" распространяется как на основные, так и на производные физические величины. Размерность основной величины по отношению к себе самой равна единице и не зависит от других величин, т. е. формула размерности основной величины совпадает с ее символом, например: размерность длины – L, размерность массы – M и т. д. Размерность величины следует обозначать знаком dim.

Чтобы найти размерность производной физической величины в некоторой системе величин, следует в правую часть определяющего уравнения этой величины вместо обозначения величин подставить их размерность. Так, например, подставив в определяющее уравнение скорости равномерного движения V = l/t вместо dl размерность длины L и вместо dt – размерность времени T, получим

dim V= L/T = LT – 1. (2.1)

Над размерностями можно производить следующие действия: умножение, деление, возведение в степень и извлечение корня.

Показатель размерности физической величины – показатель степени, в которую возведена размерность основной физической величины, входящей в размерность производной физической величины. Показатели размерности могут принимать различные значения: целые или дробные, положительные или отрицательные.

Размерная физическая величина – физическая величина, в размерности которой хотя бы одна из основных физических величин возведена в степень, не равную нулю. Если все показатели степени размерности величин равны нулю, то такая физическая величина называется безразмерной. Безразмерными являются все относительные величины, т. е. отношение одноименных величин. Например, относительная плотность r – безразмерная величина. Действительно,

r = L-3M/L-3M = L0M0 = 1.

Система физических величин – совокупность величин, связанных между собой зависимостью. Система физических величин состоит из основных и производных физических величин.

В практической деятельности необходимо проводить измерения различных физических величин. Разнообразные проявления (количественное или качественное) любого свойства образуют множества, отображение элементов которых на упорядоченное множество чисел или в более общем случае условных знаков образуют шкалы измерения этих свойств.

Шкала физической величины – это упорядоченная последовательность значений ФВ, принятая по соглашению на основании результатов точных измерений.

В соответствии с логической структурой проявления свойств различают пять основных типов шкал измерений.

1. Шкала наименований (шкала классификации). Такие шкалы используются для классификации эмпирических объектов, свойства которых проявляются только в отношении эквивалентности, Эти свойства нельзя считать физическими величинами, поэтому шкалы такого вида не являются шкалами ФВ. Это самый простой тип шкал, основанный на приписывании качественным свойствам объектов чисел, играющих роль имен. В шкалах наименований, в которых отнесение отражаемого свойства к тому или иному классу эквивалентности осуществляется с помощью органов чувств человека, — это наиболее адекватный результат, выбранный большинством экспертов. При этом большое значение имеет правильный выбор классов эквивалентной шкалы - они должны различаться наблюдателями, экспертами, оценивающими данное свойство. Нумерация объектов по шкале наименований осуществляется по принципу: "не приписывай одну и ту же цифру разным объектам". Числа, приписанные объектам, могут быть использованы только для определения вероятности или частоты появления данного объекта, но их нельзя применять для суммирования или других математических операций.

Поскольку данные шкалы характеризуются только отношениями эквивалентности, то в них отсутствуют понятия нуля, "больше или "меньше" и единицы измерения. Примером шкал наименований являются широко распространенные атласы цветов, предназначенные для идентификации цвета.

2. Шкала порядка (шкала рангов). Если свойство данного эмпирического объекта проявляет себя в отношении эквивалентности и порядка по возрастанию или убыванию количественного проявления свойства, то для него может быть построена шкала порядка. Она является монотонно возрастающей или убывающей и позво­ляет установить отношение больше/меньше между величинами, характеризующими указанное свойство. В шкалах порядка суще­ствует или не существует нуль, но принципиально нельзя ввести единицы измерения, так как для них не установлено отношение пропорциональности и соответственно нет возможности судить, во сколько раз больше или меньше конкретные проявления свой­ства.

В случаях, когда уровень познания явления не позволяет точно установить отношения, существующие между величинами данной характеристики, либо применение шкалы удобно и достаточно для практики, используют условные (эмпирические) шкалы по­рядка. Условная шкала — это шкала ФВ, исходные значения кото­рой выражены в условных единицах. Например, шкала вязкости Энглера, 12-балльная шкала Бофорта для измерения силы морс­кого ветра.

Определение значения величин при помощи шкал порядка нельзя считать измерением, так как на этих шкалах не могут быть введены единицы измерения. Операцию по приписыванию числа требуемой величине следует считать оцениванием. Оценивание по шкалам порядка является неоднозначным и весьма условным.

  1. Шкала интервалов (шкала разностей). Эти шкалы являются дальнейшим развитием шкал порядка и применяются для объек­тов, свойства которых удовлетворяют отношениям эквивалентно­сти, порядка и аддитивности. Шкала интервалов состоит из оди­наковых интервалов, имеет единицу измерения и произвольно выбранное начало — нулевую точку. К таким шкалам относится летосчисление по различным календарям, в которых за начало отсчета принято либо сотворение мира, либо Рождество Христо­во и т.д. Температурные шкалы Цельсия, Фаренгейта и Реомюра также являются шкалами интервалов.