Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Прямая и плоскость в пространстве.doc
Скачиваний:
4
Добавлен:
20.04.2019
Размер:
1.05 Mб
Скачать

3. Взаимное расположение прямых в пространстве

Если в пространстве даны две прямые, то они могут 1) быть параллельны, 2) пересекаться, 3) скрещиваться.

Выясним, как по уравнениям прямых определить их взаимное расположение.

Пусть прямые и заданы каноническими уравнениями:

: , : .

Е сли прямые параллельны, то их направляющие векторы

и

коллинеарные. Так как коллинеарные векторы имеют пропорциональные координаты, то условие параллельности прямых будет иметь вид:

. (7)

Т еперь рассмотрим две пересекающиеся прямые. Такие прямые можно поместить в одну плоскость. Но это значит, что векторы , и будут компланарны. Следовательно,

, (8)

или, в координатной форме,

. (9)

Таким образом, если прямые и не параллельны и для них выполняется условие (8) (или, в координатной форме, условие (9)), то они пересекаются.

Так как скрещивающиеся прямые нельзя поместить в одну плоскость, то для скрещивающихся прямых условие (8) не выполняется. Следовательно, если прямые и не параллельны и для них не выполняется условие (8) (или, в координатной форме, условие (9)), то они скрещиваются.

НАПРИМЕР. Прямые

: и :

будут параллельны, так как их направляющие векторы и удовлетворяют условию (7):

.

Прямые

: и :

не являются параллельными (их направляющие векторы не коллинеарны) и для них выполняется условие (9):

Следовательно, прямые и – пересекаются.

И, наконец, рассмотрим прямые

: и : .

Они не являются параллельными (их направляющие векторы не коллинеарны) и для них не выполняется условие (9):

Следовательно, прямые и – скрещиваются.

4. Задачи, связанные с взаимным расположением прямых

Рассмотрим некоторые задачи аналитической геометрии, которые связаны с взаимным расположением прямых в пространстве.

ЗАДАЧА 2. Найти угол между пересекающимися (скрещивающимися) прямыми в пространстве.

ОПРЕДЕЛЕНИЕ. Углом между двумя скрещивающимися прямыми и называется угол между прямой и проекцией прямой на любую плоскость, проходящую через прямую .

И наче говоря, угол между скрещивающимися прямыми – это угол между двумя пересекающимися прямыми, параллельными данным.

Пусть даны две пересекающиеся или скрещивающиеся прямые:

: и : .

Обозначим , – направляющие векторы первой и второй прямой соответственно.

Так как один из углов между прямыми равен углу между их направляющими векторами, а второй угол , то углы и могут быть найдены по формуле

,

или ,

где знак плюс берется в том случае, когда надо найти величину острого угла, а знак минус – когда надо найти величину тупого угла.

З АДАЧА 3. Найти расстояние от точки до прямой в пространстве.

Пусть дана прямая

:

и – точка, не принадлежащая этой прямой. Обозначим – направляющий вектор прямой , – точка на прямой , – расстояние от точки до .

Рассмотрим параллелограмм, построенный на векторах и . Тогда – высота этого параллелограмма, опущенная из вершины . Следовательно,

.

ПРИМЕР. Найти расстояние от точки до прямой : .

Из условия задачи имеем: , . Тогда

,

,

, ,

– искомое расстояние.

ЗАДАЧА 4. Найти расстояние между скрещивающимися прямыми.

ОПРЕДЕЛЕНИЕ. Расстоянием между двумя скрещивающимися прямыми называется длина их общего перпендикуляра.

Пусть даны две скрещивающиеся прямые

: и : ,

и – расстояние между и .

Построим плоскость , проходящую через прямую параллельно . Тогда – расстояние от прямой до плоскости . Найти это расстояние можно по формуле:

,

где – общее уравнение плоскости ,

– любая точка на прямой .

ПРИМЕР. Найти расстояние между двумя прямыми

: и : .

1) Прежде всего, установим взаимное расположение данных прямых. По условию задачи: и – направляющий вектор и фиксированная точка первой прямой, и – направляющий вектор и фиксированная точка второй прямой; . Имеем:

1) – прямые не параллельны;

2) вычислим :

.

Следовательно, данные прямые являются скрещивающимися.

2) Запишем уравнение плоскости , проходящей через прямую параллельно :

: .

Тогда – расстояние от точки до плоскости :

.

Замечание. Предложенный способ нахождения расстояния между скрещивающимися прямыми – не единственный. Можно найти это расстояние, используя векторную алгебру.

Д ействительно, построим на векторах , и пирамиду.

Тогда – высота пирамиды, опущенная из точки и, следовательно,

ЗАДАЧА 5. Найти точку пересечения прямых.

Пусть даны две пересекающиеся прямые

: и : ,

– точка пересечения прямых. Тогда – решение системы уравнений

или, переходя к параметрическим уравнениям прямой,

ПРИМЕР. Найти точку пересечения прямых

: и : .

1) Прямые и не являются параллельными (их направляющие векторы не коллинеарны) и для них выполняется условие (9):

.

Следовательно, прямые и – пересекаются.

2) Найдем точку пересечения прямых. Для этого перейдем к их параметрическим уравнениям:

: и :

и решим систему

, ;

, , .

Таким образом, точкой пересечения прямых является точка