Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Прямая и плоскость в пространстве.doc
Скачиваний:
4
Добавлен:
20.04.2019
Размер:
1.05 Mб
Скачать

§ 13. Прямая в пространстве

1. Уравнения прямой в пространстве

Напомним, что в аналитической геометрии любая пространственная линия рассматривается как пересечение двух поверхностей.

Так как каждая прямая всегда может быть помещена в некоторую плоскость и при пересечении двух плоскостей образуется прямая, то в аналитической геометрии прямую в пространстве принято задавать как пересечение двух плоскостей.

Итак, пусть и – уравнения любых двух различных плоскостей, содержащих прямую . Тогда координаты любой точки прямой удовлетворяют одновременно обоим уравнениям, т.е. являются решениями системы

(1)

Систему (1) называют общими уравнениями прямой в пространстве. Так как через любую прямую в пространстве проходит множество плоскостей, то любую прямую можно задать ее общими уравнениями и не единственным образом.

Недостатком задания прямой общими уравнениями является то, что по их виду ничего нельзя сказать о расположении прямой в пространстве. При решении задач удобнее использовать другие, более наглядные формы записи уравнений прямой – параметрические или канонические уравнения.

Получим параметрические и канонические уравнения прямой в пространстве, решив следующую задачу.

ЗАДАЧА 1. Записать уравнение прямой в пространстве, проходящей через точку , параллельно вектору .

Также, как и для прямой на плоскости, вектор, параллельный прямой в пространстве, называют направляющим вектором этой прямой.

П усть – текущая точка прямой. Обозначим через и  – радиус-векторы точек и .

Рассмотрим векторы и . По условию задачи они параллельны.

Следовательно, существует такое число ( называют параметром), что

,

, (2*)

или, в координатной форме,

(2)

Уравнение (2*) и систему уравнений (2) называют параметрическими уравнениями прямой в пространстве (в векторной и координатной форме соответственно).

Если в задаче 1 вектор не параллелен ни одной из координатных плоскостей (т.е. если , и ), то из уравнений системы (2) можно выразить параметр :

, ,

и заменить систему (2) одним равенством вида:

. (3)

где – координаты некоторой точки на прямой; , , – координаты направляющего вектора прямой.

Уравнения (3) называют каноническими уравнениями прямой в пространстве.

Ч астным случаем канонических уравнений являются уравнения прямой, проходящей через две заданные точки.

Действительно, пусть прямая проходит через две точки и . Тогда вектор

является ее направляющим вектором, и канонические уравнения этой прямой будут иметь вид

. (4)

Уравнения (4) называют уравнениями прямой, проходящей через две заданные точки и .

2. Переход от общих уравнений прямой к каноническим

Переход от канонических (параметрических) уравнений прямой к общим не вызывает затруднений. Действительно, если канонические уравнения прямой имеют вид

,

то ее параметрические уравнения:

, ,

а общие уравнения:

Переход от общих уравнений прямой к каноническим (параметрическим) требует несколько больших усилий.

Пусть прямая задана общими уравнениями:

(5)

Чтобы записать канонические (параметрические) уравнения этой прямой, необходимо найти ее направляющий вектор и координаты какой-нибудь точки на прямой. Координаты точки найти легко – это одно из решений системы уравнений (5). Выясним, как можно найти направляющий вектор .

П усть и – плоскости, уравнения которых входят в общие уравнения прямой, и – нормальные векторы к плоскостям и соответственно.

Так как прямая лежит в плоскости , то векторы и перпендикулярны.

Так как прямая лежит в плоскости , то векторы и тоже перпендикулярны.

Следовательно, в качестве можем взять векторное произведение векторов и (см. определение векторного произведения в §9).

ПРИМЕР. Записать канонические уравнения прямой

(6)

1) Найдем одно из решений системы (6). Так как , то этот минор можно выбрать в качестве базисного минора матрицы системы (6). Следовательно, переменные и можем выбрать в качестве базисных, а переменную – свободной. Так как нам не нужно все множество решений системы (6), то придадим переменной конкретное значение. Например, полагаем . Тогда переменные и будут удовлетворять системе

Решаем эту систему по формулам Крамера и получаем:

, , ;

, .

Таким образом, – одно из решений системы (6), и точка – точка на рассматриваемой прямой.

2) Найдем направляющий вектор прямой. Имеем:

, ;

.

Следовательно, в качестве направляющего вектора прямой можем взять вектор , и канонические уравнения рассматриваемой прямой будут иметь вид:

.