Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
36 АНАЛИЗИРУЮЩЕЕ СКРЕЩИВАНИЕ.docx
Скачиваний:
21
Добавлен:
20.04.2019
Размер:
222.93 Кб
Скачать

10.Основные типы биополимеров: белки, липиды, углеводы, нуклеиновые кислоты. Структура белков как основа проявления биологической индивидуальности и узнавания. Генетический код.

Полимеры— неорганические и органические, аморфные и кристаллические вещества, состоящие из «мономерных звеньев», соединённых в длинные макромолекулы химическими или координационными связями. Биополимеры — класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды. Биополимеры состоят из одинаковых звеньев — мономеров. Мономеры белков — аминокислоты, нуклеиновых кислот — нуклеотиды, в полисахаридах — моносахариды. Выделяют два типа биополимеров — регулярные (некоторые полисахариды) и нерегулярные (белки, нуклеиновые кислоты, некоторые полисахариды). Практически все органические вещества это макромолекулы, биополимеры.

  • Белки

Белки – сложные органические вещества, биополимеры, макромолекулы, мономерами которых являются аминокислоты. Белки имеют несколько уровней организации — первичная, вторичная, третичная, и иногда четвертичная. Все белки являются высокомолекулярными пептидами. Условную границу между крупными полипептидами и белками обычно проводят в области мол. масс 8000-10 000. Простые белки содержат только аминокислоты, а сложные белки – еще и неаминокислотные компоненты: гем, производные витаминов, липидные или углеводные компоненты (гемопротеины, гликопротеины, липопротеины).

Структура белков

Первичная структура белка

Первичная структура – цепочка аминокислот, соединенных ковалентной, полярной, пептидной связью.Под первичной структурой белка понимается последовательность аминокислот в полипептидной цепи (или цепях) и положение дисульфидных связей, если они имеются.

Вторичная структура белка

На этом структурном уровне описываются стерические взаимосвязи между расположенными близко друг к другу вдоль цеди аминокислотами. Вторичная структура может быть регулярной (альфа-спираль, складчатый бета-слой) или не обнаруживать никаких признаков регулярности (неупорядоченная конформация).

Третичная структура белка

Общее расположение, взаимную укладку различных областей, доменов и отдельных аминокислотных остатков одиночной полипептидной цепи называют третичной структурой данного белка. Четкой границы между вторичной и третичной структурами провести нельзя, однако под третичной структурой понимают стерические взаимосвязи между аминокислотными остатками, далеко отстоящими друг от друга по цепи.

Четвертичная структура белка

Если белки состоят из двух и более полипептидных цепей, связанных между собой нековалентными (не пептидными и не дисульфидными) связями, то говорят, что они обладают четвертичной структурой. Такие агрегаты стабилизируются водородными связями и электростатическими взаимодействиями, между остатками, находящимися на поверхности полипептидных цепей. Подобные белки называют олигомерами, а составляющие их индивидуальные полипептидные цепи – протомерами, мономерами или субъединицами. Многие олигомерные белки содержат два или четыре протомера и называются димерами или тетрамерами соответственно. Довольно часто встречаются олигомеры, содержащие более четырех протомеров, особенно среди регуляторных белков (транскарбамоилаза). Олигомерные белки играют особую роль во внутриклеточной регуляции: их протомеры могут слегка менять взаимную ориентацию, что приводит к изменению свойств олигомера. Наиболее изученный пример – гемоглобин.

Функции белков

Каталитическая функция. Эта функция белков определяет скорость химических реакций в биологических системах.

Транспортная функция. Дыхательная функция крови, в частности перенос кислорода, осуществляется молекулами гемоглобинабелка эритроцитов. В транспорте липидов принимают участие альбумины сыворотки крови.

Защитная функция. Основную функцию защиты в организме выполняет иммунная система, которая обеспечивает синтез специфических защитных белков-антител в ответ на поступление в организм бактерий, токсинов, вирусов или чужеродных белков

Сократительная функция.

Структурная функция

Гормональная функция

Питательная (резервная) функция.

Липиды

Липиды — это жироподобные органические соединения, нерастворимые в воде, но хорошо растворимые в неполярных растворителях (эфире, бензине, бензоле, хлороформе и др.). Липиды принадлежат к простейшим биологическим молекулам. Функции жиров – энергетическая, строительная ( жир входит в состав клеточных мембран). Вследствие плохой теплопроводимости, жир способен выполнять функцию теплоизоляторов. Образование некоторых липидов предшествуют синтезу ряда гормонов. Следовательно, эти веществам присуща и функция регуляции обменных процессов.

  • Углеводы

УГЛЕВОДЫ – главный источник энергии в организме человека. Углеводы по своей химической структуре можно разделить на простые углеводы ( моносахариды и дисахариды ) и сложные углеводы ( полисахариды ).Простые углеводы: Глюкоза, Фруктоза, Галактоза. Сложные углеводы: Крахмал, Гликоген. Углеводы выполняют две основные функции – строительную и энергетическую.

  • Нуклеиновые кислоты

Нуклвоновые кислоты -это молекулы ДНК (дезоксирибонуклеиновой кислоты) и РНК (рибонуклеиновой кислоты). ДНК - биополимер, ее мономеры - нуклео-тиды состоят из азотистого основания (аденин, гуанин, цитозин, тимин), моносахарида (дезоксирибоза) и остатка фосфорной кислоты. Сама молекула ДНК - это 2 закрученные в спираль полинуклеотидные цепи, объединенные между собой водородными связями. Функция ДНК: запись, хранение и воспроизведение наследственной информации. Рибонуклеиновая кислота (РНК) одно-цепочечный биополимер, состоящий из нуклеотидов, в которых азотистое основание тимин заменено урацилом, а углевод дезоксирибоза — рибозой. Различают 3 вида РНК: информационную (и-РНК), транспортную (т-РНК) и рибосомальную (р-РНК). Функции РНК: участие в воспроизведении наследственной информации (в синтезе белка). Аденозинтрифосфорная кислота (АТФ)- мононуклеотид, состоящий из ри-бозы, аденина и трех остатков фосфорной кислоты. Функция: АТФ - универсальный источник энергии в клетке.

Генетический код – это система записи информации о последовательности расположения аминокислот в белках с помощью последовательного расположения нуклеотидов в и-РНК. Св-ва ген. кода: 1) Код триплетен. Это означает, что каждая из 20 аминокислот защифрована последовательностью 3 нуклеотидов, называется триплетом или кодоном. 2) Код вырожден. Это означает, что каждая аминокислота шифруется более чем одним кодоном (исключение метиотин и триптофан) 3) Код однозначен – каждый кодон шифрует только 1 аминоксилоту 4) Между генами имеются «знаки препинания» (УАА,УАГ,УГА) каждый из которых означает прекращение синтеза и стоит в конце каждого гена. 5) Внутри гена нет знаков препинания. 6) Код универсален. Генетический код един для всех живых на земле существ.

Билет 13.

  1. Основные типы биополимеров: белки, липиды, углеводы, нуклеиновые кислоты. Структура РНК. Разнообразие и биологическое значение РНК.

Полимеры— неорганические и органические, аморфные и кристаллические вещества, состоящие из «мономерных звеньев», соединённых в длинные макромолекулы химическими или координационными связями. Биополимеры — класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды. Биополимеры состоят из одинаковых звеньев — мономеров. Мономеры белков — аминокислоты, нуклеиновых кислот — нуклеотиды, в полисахаридах — моносахариды. Выделяют два типа биополимеров — регулярные (некоторые полисахариды) и нерегулярные (белки, нуклеиновые кислоты, некоторые полисахариды). Практически все органические вещества это макромолекулы, биополимеры.

  • Белки

Белки – сложные органические вещества, биополимеры, макромолекулы, мономерами которых являются аминокислоты. Белки имеют несколько уровней организации — первичная, вторичная, третичная, и иногда четвертичная. Все белки являются высокомолекулярными пептидами. Условную границу между крупными полипептидами и белками обычно проводят в области мол. масс 8000-10 000. Простые белки содержат только аминокислоты, а сложные белки – еще и неаминокислотные компоненты: гем, производные витаминов, липидные или углеводные компоненты (гемопротеины, гликопротеины, липопротеины).

Функции белков

Каталитическая функция. Эта функция белков определяет скорость химических реакций в биологических системах.

Транспортная функция. Дыхательная функция крови, в частности перенос кислорода, осуществляется молекулами гемоглобинабелка эритроцитов. В транспорте липидов принимают участие альбумины сыворотки крови.

Защитная функция. Основную функцию защиты в организме выполняет иммунная система, которая обеспечивает синтез специфических защитных белков-антител в ответ на поступление в организм бактерий, токсинов, вирусов или чужеродных белков

Сократительная функция.

Структурная функция

Гормональная функция

Питательная (резервная) функция.

  • Липиды

Липиды — это жироподобные органические соединения, нерастворимые в воде, но хорошо растворимые в неполярных растворителях (эфире, бензине, бензоле, хлороформе и др.). Липиды принадлежат к простейшим биологическим молекулам. Функции жиров – энергетическая, строительная ( жир входит в состав клеточных мембран). Вследствие плохой теплопроводимости, жир способен выполнять функцию теплоизоляторов. Образование некоторых липидов предшествуют синтезу ряда гормонов. Следовательно, эти веществам присуща и функция регуляции обменных процессов.

  • Углеводы

УГЛЕВОДЫ – главный источник энергии в организме человека. Углеводы по своей химической структуре можно разделить на простые углеводы ( моносахариды и дисахариды ) и сложные углеводы ( полисахариды ).Простые углеводы: Глюкоза, Фруктоза, Галактоза. Сложные углеводы: Крахмал, Гликоген. Углеводы выполняют две основные функции – строительную и энергетическую.

  • Нуклеиновые кислоты

Нуклвоновые кислоты -это молекулы ДНК (дезоксирибонуклеиновой кислоты) и РНК (рибонуклеиновой кислоты). ДНК - биополимер, ее мономеры - нуклео-тиды состоят из азотистого основания (аденин, гуанин, цитозин, тимин), моносахарида (дезоксирибоза) и остатка фосфорной кислоты. Сама молекула ДНК - это 2 закрученные в спираль полинуклеотидные цепи, объединенные между собой водородными связями. Функция ДНК: запись, хранение и воспроизведение наследственной информации. Рибонуклеиновая кислота (РНК) одно-цепочечный биополимер, состоящий из нуклеотидов, в которых азотистое основание тимин заменено урацилом, а углевод дезоксирибоза — рибозой. Различают 3 вида РНК: информационную (и-РНК), транспортную (т-РНК) и рибосомальную (р-РНК). Функции РНК: участие в воспроизведении наследственной информации (в синтезе белка). Аденозинтрифосфорная кислота (АТФ)- мононуклеотид, состоящий из ри-бозы, аденина и трех остатков фосфорной кислоты. Функция: АТФ - универсальный источник энергии в клетке.

Структура РНК  

РНК — одноцепочечная спираль, состоит из нуклеотидов. По структуре различают двухцепочечные и одноцепочечные РНК. Двухцепочечные РНК – хранители генетической информации у ряда вирусов, т.е. выполняют у них функции хромосом. Одноцечные иРНК переносят информацию о последовательности аминокислот в белках от хромосом к месту их синтеза и учувствуют в синтезе белков.

Разнообразие и биологическое значение РНК.

Молекула РНК полимер мономерами которой являются нуклеотиды. РНК представляет собой однонитивую молекулу, состоящую из азотистого основания, пентозы и фосфорной кислоты. Три азотистых основания такие же как у ДНК, но вместо тимина урацил. Содержание РНК в клетках сильно колеблется. Оно заметно повышено в клетках в которых происходит синтез белка. Виды РНК: 1) Транспортная РНК (т-РНК). Молекулы т – РНК самые короткие: они состоят всего из 80-100 нуклеотидов. Транспортная РНК в основном содержится в цитоплазме клетки. Функция состоит в переносе аминокислот в рибосомы, к месту синтеза белка. Из общего содержания РНК клетки на долю т-РНК приходится 10%. 2) Рибосомная РНК (р-РНК). Это самые крупные РНК: в их молекулу входит 3-5 тысяч нуклеотидов. Р-РНК составляет существенную часть структуры рибосомы. Из общего содержания РНК клетки на долю р-РНК приходится 90%. 3) Информационная РНК или матричная. Содержится в ядре и цитоплазме. Функция её состоит в переносе информации о структуре белка в рибосомах. На долю и-РНК приходится примерно 0,5-1% от общего содержания РНК клетки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]