Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
цитология.docx
Скачиваний:
5
Добавлен:
19.04.2019
Размер:
109.34 Кб
Скачать
  1. Цитология – наука о клетке. Из среды других биологических наук она выделилась почти 100 лет назад. Впервые обобщенные сведения о строении клеток были собраны в книгу Ж.-Б. Карнуа «Биология клетки», вышедшей в 1884 году. Современная цитология изучает строение клеток, их функционирование как элементарных живых систем: исследуются функции отдельных клеточных компонентов, процессы воспроизведения клеток, их репарации, приспособление к условиям среды и многие другие процессы, позволяющие судить об общих для всех клеток свойствах и функциях. Цитология рассматривает также особенности строения специализированных клеток. Другими словами, современная цитология – это физиология клетки. Цитология тесно сопряжена с научными и методическими достижениями биохимии, биофизики, молекулярной биологии и генетики. Это послужило основанием для углубленного изучения клетки уже с позиций этих наук и появления некой синтетической науки о клетке – биологии клетки, или клеточной биологии.

Первые микроскописты Марчелло Мальпиги (1671) и Грю (1671). Длительное и пристальное изучение клетки как таковой привело к формулированию важного теоретического обобщения, имеющего общебиологическое значение, а именно к появлению клеточной теории. В XVII в. Роберт Гук, физик и биолог, отличавшийся большой изобретательностью, создал микроскоп. Рассматривая под своим микроскопом тонкий срез пробки, Гук обнаружил, что она построена из малюсеньких ничем не заполненных ячеек, разделенных тонкими стенками, которые, как это нам теперь известно, состоят из целлюлозы. Он назвал эти маленькие ячейки клетками. В дальнейшем, когда другие биологи начали исследовать под микроскопом растительные ткани, оказалось, что маленькие ячейки, обнаруженные Гуком в мертвой иссохшей пробке, имеются и в живых растительных тканях, но у них они не пустые, а содержат каждая по маленькому студенистому тельцу. После того, как микроскопическому исследованию подвергли животные ткани, было установлено, что они также состоят из мелких студенистых телец, но что эти тельца лишь в редких случаях отделены друг от друга стенками. В 1681 г. Лондонское королевское общество в своем заседании подробно обсуждало своеобразное положение. Голландец Левенгук (A. van Leenwenhoek) описывал изумительные чудеса, которые открывал своим микроскопом в капле воды, в настое перца, в иле реки, в дупле собственного зуба. Левенгук с помощью микроскопа обнаружил и зарисовал сперматозоиды различных простейших, детали строения костной ткани (1673—1677). "С величайшим изумлением я увидел в капле великое множество зверюшек, оживленно двигающихся во всех направлениях, как щука в воде. Самое мелкое из этих крошечных животных в тысячу раз меньше глаза взрослой вши."

Лучшие лупы Левенгука увеличивали в 270 раз. С ними он увидел впервые кровеносные тельца, движение крови в капиллярных сосудах хвоста головастика, полосатость мускулов. Он открыл инфузории. Он впервые погрузился в мир микроскопических одноклеточных водорослей, где лежит граница между животным и растением; где движущееся животное, как зеленое растение, обладает хлорофиллом и питается, поглощая свет; где растение, еще прикрепленное к субстрату, потеряло хлорофилл и заглатывает бактерии. Наконец, он видел даже бактерии и в великом разнообразии. Но, разумеется, тогда не было еще и отдаленной возможности понять ни значение бактерий для человека, ни смысла зеленого вещества - хлорофилла, ни границы между растением н животным. Открывался новый мир живых существ, более разнообразный и бесконечно более оригинальный, чем видимый нами мир. Лоренц Окен считал, что сложные организмы являются суммой элементарных организмов – «инфузорий», кот. Войдя в его состав, живут общей жизнью целого, но в то же время продолжают оставаться независимыми». «Учебник натурфилософии»1809г. Пуркинье (1837г) Теория ядросодержащих ядрышек.Рудольф Вирхов 1859г. «всякая клетка от клетки». «Целлюлярная патология как учение основанное на физиологической и патологической гистологии»В результате всех этих исследований в 1939 г. Шлейден и Шванн независимо друг от друга сформулировали клеточную теорию.1.Клетка основная единица строения,функционирования и развития всех живых организмов.2.клетки всех однокл.и многоклеточных организмов сходны.3.размножение клеток происходит путем их деления,каждая новая клетка образ-ся в результате деления исход.клетки.4.в сложных многокл.-х организмах клетки специализированы в ткани.

  1. Современное представление о клетке тесно связано с техническими достижениями и усовершенствованиями методов исследования. Помимо обычной световой микроскопии, не утратившей своей роли, в последние несколько десятилетий большое значение приобрели поляризационная, ультрафиолетовая, флюоресцентная, фазовоконтрастная микроскопия. Среди них особое место занимает электронная микроскопия, разрешающая способность которой позволила проникнуть и изучить субмикроскопическую и молекулярную структуру клетки. Современные методы исследования позволили вскрыть детальную картину клеточной организации.

Каждая клетка состоит из ядра и цитоплазмы, отделенных друг от друга и от внешней среды оболочками. Компонентами цитоплазмы являются: оболочка, гиалоплазма, эндоплазматическая сеть и рибосомы, аппарат Гольджи, лизосомы, митохондрии, включения, клеточный центр, специализированные органеллы.

Часть организма, выполняющая какую-то особую функцию, называют органом. Любой орган – легкое, печень, почка, например – имеет каждый свою особую структуру, благодаря которой он играет определенную роль в организме. Точно так же в цитоплазме имеются особые структуры, своеобразное строение которых дает им возможность нести определенные функции, необходимые для метаболизма клетки; эти структуры называют органеллами («маленькими органами»).

Выяснение природы, функции и распределения органелл цитоплазмы стало возможным лишь после развития методов современной биологии клетки. Наиболее полезными в этом отношении оказались: 1) электронная микроскопия; 2) фракционирование клеток, с помощью которого биохимики могут выделять относительно чистые фракции клеток, содержащие определенные органеллы, и изучать, таким образом, отдельные интересующие их метаболические реакции; 3) радиоавтография, сделавшая возможным непосредственное изучение отдельных метаболических реакций, протекающих в органеллах.

Метод, с помощью которого органеллы выделяют из клеток, называют фракционированием. Этот метод оказался очень плодотворным, дав биохимикам возможность выделять разные органеллы клетки в относительно чистом виде. Он позволяет, кроме того, определять химический состав органелл и содержащиеся в них ферменты и на основании получаемых данных делать выводы об их функциях в клетке. В качестве первого шага клетки разрушают путем гомогенизации в какой-нибудь подходящей среде, которая обеспечивает сохранность органелл и предотвращает их агрегацию. Очень часто для этого используют раствор сахарозы. Хотя митохондрии и многие другие клеточные органеллы остаются при этом неповрежденными, такие мембранные переплетения, как эндоплазматический ретикулум, а также плазматическая мембрана, распадаются на фрагменты. Однако образующиеся фрагменты мембран нередко замыкаются сами на себя, в результате чего получаются округлые пузырьки различных размеров.

На следующем этапе клеточный гомогенат подвергают ряду центрифугирований, скорость и продолжительность которых всякий раз возрастает; этот процесс называется дифференциальным центрифугированием. Разные органеллы клетки осаждаются на дне центрифужных пробирок при различных скоростях центрифугирования, что зависит от размеров, плотности и формы органелл. Образующийся осадок можно отобрать и исследовать. Быстрее всех осаждаются такие крупные и плотные структуры, как ядра, а для осаждения более мелких и менее плотных структур, таких, как пузырьки эндоплазматического ретикулума, требуются более высокие скорости и более длительное время. Поэтому при низких скоростях центрифугирования ядра осаждаются, а другие клеточные органеллы остаются в суспензии. При более высоких скоростях осаждаются митохондрии и лизосомы, а при длительном центрифугировании и очень высоких скоростях в осадок выпадают даже такие мелкие частицы, как рибосомы. Осадки можно исследовать с помощью электронного микроскопа, чтобы определить чистоту полученных фракций. Все фракции до некоторой степени загрязнены другими органеллами. Если тем не менее удается добиться достаточной чистоты фракций, то их подвергают затем биохимическому анализу, чтобы определить химический состав и ферментативную активность выделенных органелл.

Сравнительно недавно был создан другой метод фракционирования клеток – центрифугирование в градиенте плотности; при этом центрифугирование производят в пробирке, в которой предварительно наслаивают друг на друга растворы сахарозы все возрастающей концентрации, а следовательно, и возрастающей плотности. При центрифугировании содержащиеся в гомогенате органеллы располагаются в центрифужной пробирке на тех уровнях, на которых находятся растворы сахарозы, соответствующие им по плотности. Этот метод дает биохимикам возможность разделять органеллы одинаковых размеров, но разной плотности (рис. 1.). В клеточной биологии особенно успешно используются два метода, основанные на получении механических реплик. Один из них - метод электронной микроскопии «замораживание-скалывание» - дает возможность изучать внутреннее строение клеточных мембран. Клетки замораживают при температуре жидкого азота (-196°С) в присутствии криопротектора (антифриза) во избежание искажений за счет образования кристаллов льда. Замороженный блок затем раскалывают лезвием ножа. Скол часто проходит через гидрофобную середину двойного слоя липидов, обнажая внутреннюю поверхность клеточных мембран. Образующуюся поверхность скола оттеняют платиной, органический материал удаляют и изучают полученные реплики в электронном микроскопе (рис. 4-21). Такие реплики усеяны небольшими выпячиваниями - внутримембранными частицами, которые представляют собой крупные мембранные белки. Этот метод чрезвычайно удобен и эффективен при анализе распределения таких белков на поверхности мембраны (рис. 4-22). Другой важный метод электронной микроскопии - метод «замораживания-травления» - используется для изучения внешней поверхности клеток и мембран. В данном случае клетки замораживают при очень низкой температуре и замороженный блок раскалывают лезвием ножа. Содержание льда вокруг клеток (и в меньшей степени внутри клеток) понижают возгонкой воды в вакууме при повышении температуры (процесс называют вакуумной сушкой) (рис. 4-23). Участки клетки, подвергнутые такому травлению, затем оттеняют (как было показано ранее) для приготовления платиновой реплики. Метод замораживания - травления не позволяет использовать криппротекторы, поскольку они не летучи и по мере возгонки воды остаются в образце. Чтобы добиться высокого качества изображения, необходимо препятствовать образованию больших кристаллов льда. Это возможно при ускоренном замораживании образца (при скорости замораживания выше 20° С в миллисекунду). Один из методов такого быстрого замораживания состоит в использовании специального устройства. быстро сближающего образец с медным блоком, охлажденным до — 269°С жидким гелием. Особенно впечатляющие результаты получают после глубокого травления быстро замороженных клеток. Этот метод позволяет выявлять структуры внутреннего содержимого клеток, демонстрируя их трехмерную организацию с исключительной четкостью (рис. 4-24). Поскольку в этом случае в микроскопе под вакуумом наблюдают не образцы, а реплики, полученные после оттенения металлом, методы замораживание - скалывание и замораживание - травление можно использовать для изучения замороженных нефиксированных клеток и исключить риск проявления артефактов, вызванных фиксацией.

sedimentation coefficient - коэффициент седиментации.

Показатель скорости осаждения микрочастиц при центрифугировании; К.с. измеряется в единицах S (по имени Т.Сведберга, сконструировавшего в 1923 первую центрифугу): 1S=1·10-13 сек.; в одном и том же растворителе при одной и той же температуреК.с. определяется массой, формой и степенью гидратации макромолекул; К.с. многих белков находятся в пределах 1-200 S; поК.с. разделяют также молекулы нуклеиновых кислот, субчастицы рибосом

  1. Цитоплазма, отделенная от окружающей среды плазмолеммой, включает в себя гиалоплазму, находящиеся в ней обязательные клеточные компоненты — органеллы, а также различные непостоянные структуры — включения.

Гиалоплазма

Гиалоплазма — основная плазма, или матрикс цитоплазмы, представляет собой очень важную часть клетки, ее истинную внутреннюю среду.

В электронном микроскопе матрикс цитоплазмы имеет вид гомогенного или тонкозернистого вещества с низкой электронной плотностью. Гиалоплазма является сложной коллоидной системой включающей в себя различные биополимеры: белки, нуклеиновые кислоты, полисахариды и др. Эта система спосо6на переходить из золеобразного (жидкого) состояния в гелеобразное и обратно. В организованной, упорядоченной многокомпонентной системе гиалоплазмы отдельные зоны могут менять свое агрегатное состояние в зависимости от условий или от функциональной задачи; в бесструктурной на взгляд гиалоплазме могут возникать и распадаться различные фибриллярные, нитчатые комплексы белковых молекул. В состав гиалоплазмы входят главным образом различные глобулярные белки. Они составляют 20—25% общего содержания белков в эукариотической клетке. К важнейшим ферментам гиалоплазмы относится ферменты метаболизма сахаров, азотистых оснований, аминокислот, липидов и других важных соединений. В гиалоплазме располагаются ферменты активации аминокислот при синтезе белков, транспортные (трансфертные) РНК (тРНК). В гиалоплазме при участии рибосом и полирибосом (полисом) происходит синтез белков, необходимых для собственно клеточных нужд, для поддержания и обеспечения жизни данной клетки.

Цитоплазма — обязательная часть клетки, заключенная между плазматической мембраной и ядром. Цитоплазма объединяет все клеточные структуры и способствует их взаимодействию друг с другом. В цитоплазме располагаются ядро и все органоиды клетки. В сложно организованной системе органоидов эукари-отической клетки различают универсальные органоиды (митохондрии, комплекс Гольджи, рибосомы, лизосомы, ЭПС, клеточный центр), характерные для цитоплазмы клеток всех организмов. Специальные органоиды (мио-фибриллин, реснички, жгутики) встречаются в некоторых клетках. У млекопитающих животных и человека ресничками снабжены клетки дыхательного эпителия. В состав цитоплазмы входят многочисленные химические соединения. Она представляет собой не однородное химическое вещество, а сложную, постоянно изменяющуюся физико-химическую систему, характеризующуюся щелочной реакцией и высоким содержанием воды. Компоненты цитоплазмы взаимодействуют между собой внутри клетки, а также с органоидами соседних клеток и с внешней средой, поглощая одни вещества и выделяя другие. В цитоплазме осуществляются все процессы клеточного :метаболизма, кроме синтеза нуклеиновых кислот, происходящего в ядре. Под контролем ядра цитоплазма способна к росту и воспроизведению, при частичном удалении она полностью регенерирует. Цитоплазма, как правило, не способна к длительному автономному существованию. В животных клетках различают два слоя цитоплазмы. Наружный — эктоплазма (лишена большинства органоидов, обладает относительно высокой вязкостью). Внутренний слой цитоплазмы — эндоплазма (содержит основные органоиды). В цитоплазме растительных клеток имеются специальные органоиды — пластиды (лейкопласты, хлоропласта, хромопласты). Одно из основных свойств цитоплазмы живой клетки — способность к движению, которое обеспечивает связь органоидов.

Цитоплазма — обязательная часть клетки, заключенная между плазматической мембраной и ядром; подразделяется на гиалоплазму (основное вещество цитоплазмы), органоиды (постоянные компоненты цитоплазмы) и включения (временные компоненты цитоплазмы). Химический состав цитоплазмы: основу составляет вода (60–90% всей массы цитоплазмы), различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию. Характерная особенность цитоплазмы эукариотической клетки — постоянное движение (циклоз). Оно обнаруживается, прежде всего, по перемещению органоидов клетки, например хлоропластов. Если движение цитоплазмы прекращается, клетка погибает, так как, только находясь в постоянном движении, она может выполнять свои функции.

Гиалоплазма (цитозоль) представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоплазме жидкой части или крупных молекул, различают две формы гиалоплазмы: золь — более жидкая гиалоплазма и гель — более густая гиалоплазма. Между ними возможны взаимопереходы: гель превращается в золь и наоборот.

Функции цитоплазмы:

  1. объединение всех компонентов клетки в единую систему,

  2. среда для прохождения многих биохимических и физиологических процессов,

  3. среда для существования и функционирования органоидов.

4.Кле́точная мембра́на (или цитолемма, или плазмалемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутыеотсеки — компартменты или органеллы, в которых поддерживаются определенные условия среды.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды —фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй,археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7-8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

Моделью строения плазматической мембраны являестя жидкостно-мозаичная модель (рис.2), обладающая свойствами замкнутости, текучести и асимметричности. Замкнутость. Плазматическая мембрана является внешней границей клетки, а также внутренних клеточных компартментов. Текучесть. Липиды, белки и другие составляющие плазматической мембраны движутся в пределах слоя. Переходы между слоями называются flip-flop, происходят реже чем в пределах слоя, что обеспечивает наличие свойства асимметричности. Переходы между слоями осуществляют ферменты транслокаторы фосфолипидов Асимметричность. Внешняя и внутренняя поверхности мембраны различаются по составу липидов белков и наием гликокаликса на внешней поверхности мембраны.

Асимметрия мембран.

Хотя каждый монослой образован из липидов, ориентированных одинаковым образом, тем не менее, липидный состав монослоев различен. Например, в плазматической мембране эритроцитов фосфатидилхолины преобладают в наружном слое, а фосфатидилсерины во внутреннем слое мембраны. Углеводные части белков и липидов располагаются на наружной части мембраны. Кроме того, поверхности мембраны отличаются по составу белков. Степень такой асимметрии мембран различна у разных типов мембран и может меняться в процессе жизнедеятельности клетки и ее старения. Подвижность (жесткость) и текучесть мембран также зависят от ее состава. Повышенная жесткость обуславливается увеличением соотношения насыщенных и ненасыщенных жирных кислот, а также холестерина. Физические свойства мембран зависят от расположения белков в липидном слое. Липиды мембран способны к диффузии в пределах слоя параллельно поверхности мембраны (латеральная диффузия). Белки тоже способны к латеральной диффузии. Поперечная диффузия в мембранах сильно ограничена.Основные свойства бислоя — текучесть, способность к самозамыканию, гибкость, нерастяжимость, полупроницаемость

Молекулы фосфолипидов очень редко перемещаются из одного слоя мембраны в другой (флип-флоп переход). Поэтому наружный и внутренний слои могут отличаться по составу фосфолипидов. Однако в пределах «своего» слоя в определённом диапазоне температуры молекулы фосфолипидов двигаются примерно с такой же скоростью, что и в жидкости. Образно говоря, мембрана — «двумерная жидкость». Отдельная молекула фосфолипида в этой жидкости перемещается за секунду в среднем на расстояние около 2 мкм. Так что на картинке вверху движение молекул фосфолипидов не такое, как в жизни. Зато на картинке видно, что эти молекулы время от времени слегка «выпирают» из слоя, а между ними образуются небольшие щели. Так и происходит на самом деле.Благодаря текучести мембрана способна к самозамыканию. Если воткнуть в клетку тонкую иглу или трубку (микропипетку), а затем вытащить её обратно, то во многих случаях клетка остается целой и невредимой. Образовавшееся в мембране отверстие затягивается, как пленка нефти на поверхности воды, и содержимое клетки не успевает вытечь наружу.Принцип компартментализации клеток эукариот постулирует о том, что биохимические процессы в клетке локализованы в определённых отсеках, покрытых оболочкой из бислоя липидов. Большинство органоидов в эукариотической клетке являются компартментами — митохондриихлоропластыпероксисомылизосомыэндоплазматический ретикулюмядро клетки и аппарат Гольджи.

5.Наружная плазматическая мембрана осуществляет ряд функций, необходимых для жизнедеятельности клетки: защищает цитоплазму от физических и химических повреждений, делает возможным контакт и взаимодействие клеток в тканях и органах, избирательно обеспечивает транспорт в клетку пищевых веществ и выведение конечных продуктов обмена

Пассивный транспорт. Если вещество движется через мембрану из области с высокой концентрацией в сторону низкой концентрации (т. е. по градиенту концентрации этого вещества) без затраты клеткой энергии, то такой транспорт называется пассивным, или диффузией. Различают два типа диффузии: простую и облегченную.

Простая диффузия. Характерна для небольших нейтральных молекул (H2O, CO2, O2), а также гидрофобных низкомолекулярных органических веществ. Эти молекулы могут проходить без какого-либо взаимодействия с мембранными белками через поры или каналы мембраны до тех пор, пока будет сохраняться градиент концентрации.

Облегченная диффузия. Характерна для гидрофильных молекул, которые переносятся через мембрану также по градиенту концентрации, но с помощью специальных мембранных белков - переносчиков. Для облегченной диффузии, в отличие от простой, характерна высокая избирательность, так как белок переносчик имеет центр связывания комплементарный транспортируемому веществу, и перенос сопровождается конформационными изменениями белка. Один из возможных механизмов облегченной диффузии может быть следующим: транспортный белок (транслоказа) связывает вещество, затем сближается с противоположной стороной мембраны, освобождает это вещество, принимает исходную конформацию и вновь готов выполнять транспортную функцию. Мало известно о том, как осуществляется передвижение самого белка. Другой возможный механизм переноса предполагает участие нескольких белков-переносчиков. В этом случае первоначально связанное соединение само переходит от одного белка к другому, последовательно связываясь то с одним, то с другим белком, пока не окажется на противоположной стороне мембраны.

Активный транспорт. Имеет место в том случае, когда перенос осуществляется против градиента концентрации. Такой перенос требует затраты энергии клеткой. Активный транспорт служит для накопления веществ внутри клетки. Источником энергии часто является АТФ. Для активного транспорта кроме источника энергии необходимо участие мембранных белков. Одна из активных транспортных систем в клетке животных отвечает за перенос ионов Na+ и K+ через клеточную мембрану. Эта система называется Na+ - K+ - насос. Она отвечает за поддержание состава внутриклеточной среды, в которой концентрация К+ выше, чем Na+.

Пассивный транспорт. Роль осмотических процессов в клетке

Пассивный транспорт не требует затрат энергии. Он всегда идет по градиенту концентрации — оттуда, где вещества больше, туда, где его меньше. При этом вещества могут диффундировать через липидный бислой (простая диффузия) или проходить через специальные каналообразующие белки (облегченная диффузия). Иногда пассивный транспорт происходит при участии белков-переносчиков.

Частный случай пассивного транспорта —- осмос. Обычно осмосом называют диффузию растворителя через преграду, непроницаемую для растворенных веществ. Такие преграды — это обычно тонкие пленки (например, пленки изцеллофана, в которые упаковывают многие сорта сосисок). Типичная полупроницаемая пленка — липидный бислой биологических мембран.

Белки-каналы, их строение и функции

Белки-каналы - порообразующие белки, пронизывающие клеточные мембраны. Они имеют сложную третичную, а часто и четвертичную структуру (многие каналы состоят из 2-6 полипептидных цепей). В центре канала находится водная пора. Самое узкое место поры (селективный фильтр) по диаметру лишь немного превышает диаметр атома. У многих каналов есть "ворота" - участки молекулы, которые могут менять конформацию и закрывать пору. У таких каналов есть как минимум два состояния - открытое и закрытое. Наконец. у части каналов есть дополнительный участок (домен), часто похожий по форме на шарик на подвижной проволочке. который может закрывать канал при определенных условиях, делая его нечуствительным к воздействиям. обычно открывающим канал. Такое состояние канала называется инактивированным.

Большинство каналов пропускает определенные ионы. Некоторые каналы пропускают все ионы одного знака заряда (катионы илианионы. Многие каналы пропускают преимущественно одну разновидность ионов. На мембране большинства клеток есть каналы для ионов натрия, калия, хлора и кальция. Многие натриевые каналы непроницаемы для ионов калия. Это неудивительно, так как ионы калия имеют больший диаметр. Но и многие калиевые каналы непроницаемы для ионов натрия! Лишь недавно удалось понять, как обеспечивается такая избирательность.

Два основных типа каналов - лиганд-зависимые и потенциал-зависимые. Лиганд-зависимые каналы открываются при присоединении к ним извне какого-либо вещества (лиганда). Этим они похожи на белки-рецепторы (такие каналы - то же самое, что ионотропные рецепторы). Потенциал-зависимые каналы открываются или закрываются в зависимости от разности потенциала на мембране клетки.

Существуют и другие типы каналов. Например, многие каналы открываются при воздействии на них циклических нуклеотидов (цАМФ или цГМФ)не извне, а из цитоплазмы, с внутренней стороны мембраны. Есть механочувствительные каналы. Некоторые из них открываются при растяжении мембраны. В других случаях канал при натяжении открывает присоединенный к нему элемент цитоскелета или внеклеточного матрикса (так, например, открываются и закрываются натриевые каналы на волосковых клеткахвнутреннего уха позвоночных.

Белки-переносчики — это ещё одна группа транспортных белков. Они участвуют в транспорте веществ, которые не могут пройти сквозь липидный бислой. Белки-переносчики связываются с ионами или молекулами того вещества, которое они переносят, и доставляют их в клетку или из клетки. От белков–каналов они отличаются тем, что белки-канала - порообразующие белки, они пропускают вещества сквозь заполненную водой пору, а не захватывают и не перетаскивают их на другую сторону мембраны.

Чтобы лучше понять принцип работы белков-переносчиков, рассмотрим работу натрий-калиевой АТФазы. Натрий-калиевая АТФаза присутствует на мембране почти всех клеток человека. Она действует как насос, перекачивая ионы Na+ из клетки во внешнюю среду, а ионы К+ в клетку. Na+/K+ АТФаза отвечает за поддержание мембранного потенциала клетки. Как же происходит перенос ионов Na+ и K+? Сначала к натрий-калиевой АТФазе присоединяются три иона Na+, из-за чего изменяется конформация АТФазы. Затем АТФаза расщепляет молекулу АТФ на АДФ и фосфат (РО-³4). При этом фосфат-ион присоединяется к поверхности белка. Энергия, выделившаяся за счёт расщепления АТФ, расходуется на изменение конформации АТФазы. После всех превращений белок „переворачивается“, и три иона Na+ оказываются на внешней стороне мембраны, а фосфат заменяется на два иона K+, при этом ионы K+присоединяются не к тому месту, где были ионы Na+ , а связываются со своим определённым участком. Из-за этого АТФаза вновь меняет свою конформацию, и ионы К+ переносятся на внутреннюю сторону мембраны. Здесь ионы К+ отсоединяются от АТФазы. Кроме натрий-калиевой АТФазы есть также кальциевая АТФаза, хлорная АТФаза и другие. Важная особенность белков-насосов заключается в том, что каждый ион движется из области низкой концентрации в область высокой, то есть каждый ион перемещается против своего градиента концентрации. Это движение называется активным транспортом и может происходить только при помощи расходования АТФ. Помимо активного транспорта белки-переносчики могут осуществлять пассивный транспорт, перемещая вещества из области высокой концентрации в область низкой. Также этот транспорт называют облегчённой диффузией. Например, поступление глюкозы в эритроциты происходит при помощи облегчённой диффузии

6. эндоплазматическая сеть (ЭПС) — внутриклеточный органоид эукариотической клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и канальцев.

Строение

Эндоплазматический ретикулум состоит из разветвлённой сети трубочек и карманов, окружённых мембраной. Площадь мембран эндоплазматического ретикулума составляет более половины общей площади всех мембран клетки.

Мембрана ЭПР морфологически идентична оболочке клеточного ядра и составляет с ней одно целое. Таким образом, полости эндоплазматического ретикулума открываются в межмембранную полость ядерной оболочки. Мембраны ЭПС обеспечивают активный транспорт ряда элементов против градиента концентрации. Нити, образующие эндоплазматический ретикулум, имеют в поперечнике 0,05—0,1 мкм (иногда до 0,3 мкм), толщина двухслойных мембран, образующих стенку канальцев, составляет около 50 ангстрем (5 нм, 0,005 мкм). Эти структуры содержат ненасыщенные фосфолипиды, а также некоторое количество холестерина и сфинголипидов. В их состав также входят белки.

Трубочки, диаметр которых колеблется в пределах 0,1—0,3 мкм, заполнены гомогенным содержимым. Их функция — осуществление коммуникации между содержимым пузырьков ЭПС, внешней средой и ядром клетки.

Эндоплазматический ретикулум не является стабильной структурой и подвержен частым изменениям.

Выделяют два вида ЭПР:

  • гранулярный эндоплазматический ретикулум;

  • агранулярный (гладкий) эндоплазматический ретикулум.

На поверхности гранулярного эндоплазматического ретикулума находится большое количество рибосом, которые отсутствуют на поверхности агранулярного ЭПР.

Гранулярный и агранулярный эндоплазматический ретикулум выполняют различные функции в клетке.

[Править]Функции эндоплазматического ретикулума

При участии эндоплазматического ретикулума происходит трансляция и транспорт белков, синтез и транспорт липидов истероидов. Для ЭПС характерно также накопление продуктов синтеза. Эндоплазматический ретикулум принимает участие в том числе и в создании новой ядерной оболочки (например после митоза). Эндоплазматический ретикулум содержит внутриклеточный запас кальция, который является, в частности, медиатором сокращения мышечной клетки. В клетках мышечных волокон расположена особая форма эндоплазматического ретикулума — саркоплазматическая сеть.

[Править]Функции агранулярного эндоплазматического ретикулума

Агранулярный эндоплазматический ретикулум участвует во многих процессах метаболизма. Также агранулярный эндоплазматический ретикулум играет важную роль в углеводном обмене, нейтрализации ядов и запасании кальция.Ферменты агранулярного эндоплазматического ретикулума участвуют в синтезе различных липидов и фосфолипидов, жирных кислот и стероидов. В частности, в связи с этим в клетках надпочечников и печени преобладает агранулярный эндоплазматический ретикулум.

[Править]Синтез гормонов

К гормонам, которые образуются в агранулярном ЭПС, принадлежат, например, половые гормоны позвоночных животных и стероидные гормоны надпочечников. Клетки яичек и яичников, ответственные за синтез гормонов, содержат большое количество агранулярного эндоплазматического ретикулума.

[Править]Накопление и преобразование углеводов

Углеводы в организме накапливаются в печени в виде гликогена. Посредством гликолиза гликоген в печени трансформируется в глюкозу, что является важнейшим процессом в поддержании уровня глюкозы в крови. Один изферментов агранулярного ЭПС отщепляет от первого продукта гликолиза, глюкоза-6-фосфата, фосфогруппу, позволяя таким образом глюкозе покинуть клетку и повысить уровень сахаров в крови.

[Править]Нейтрализация ядов

Гладкий эндоплазматический ретикулум клеток печени принимает активное участие в нейтрализации всевозможных ядов. Ферменты гладкого ЭПР присоединяют к молекулам токсичных веществ гидрофильные радикалы, в результате чего повышается растворимость токсичных веществ в крови и моче, и они быстрее выводятся из организма. В случае непрерывного поступления ядов, медикаментов или алкоголя образуется большее количество агранулярного ЭПР, что повышает дозу действующего вещества, необходимую для достижения прежнего эффекта.

[Править]Роль эпс как депо кальция

Концентрация ионов кальция в ЭПС может достигать 10−3 моль, в то время как в цитозоле составляет порядка 10−7 моль (в состоянии покоя). Под действиеминозитолтрифосфата и некоторых других стимулов кальций высвобождается из ЭПС путем облегченной диффузии. Возврат кальция в ЭПС обеспечивается активным транспортом. При этом мембрана ЭПС обеспечивает активный перенос ионов кальция против градиентов концентрации больших порядков. И приём, и освобождение ионов кальция в ЭПС находится в тонкой взаимосвязи с физиологическими условиями.

Концентрация ионов кальция в цитозоле влияет на множество внутриклеточных и межклеточных процессов, таких как активация или инактивация ферментов, экспрессия генов, синаптическая пластичность нейронов, сокращения мышечных клеток, освобождение антител из клеток иммунной системы.