Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
10-11-12-13.docx
Скачиваний:
5
Добавлен:
18.04.2019
Размер:
288.96 Кб
Скачать

Устранение вредного влияния реакции якоря

В связи с тем что реакция якоря неблагоприятно влияет на ра­бочие свойства машины постоянного тока 1, при проектировании машины принимают меры к устранению реакции якоря или хотя бы к ослаблению ее влияния до допустимых пределов.

Компенсационная обмотка. Наиболее эффективным средст­вом подавления влияния реакции якоря по поперечной оси являет­ся применение в машине компенсационной обмотки. Эту обмотку укладывают в пазы полюсных наконечников (рис. 26.7) и включа­ют последовательно с обмоткой якоря таким образом, чтобы МДС компенсационной обмотки была противоположна по направле­нию МДС обмотки якоря . Компенсационную обмотку делают распределенной по поверхности полюсного наконечника всех главных полюсов машины. При этом линейную нагрузку для ком­пенсационной обмотки принимают равной линейной нагрузке об­мотки якоря.

Включение компенсационной обмотки последовательно в цепь якоря обеспечивает автоматичность компенсации МДС якоря при любой (в пределах номинальной) нагрузке машины. Таким образом, в машине постоянного тока с компенсационной обмоткой при переходе от холостого хода к режиму нагрузки закон распределения магнитной индукции в зазоре главных полюсов остается практически неизменным. Однако в межполюсном пространстве часть МДС якоря остается нескомпенсированной. Нежелательное влияние этой МДС на работу щеточного контакта устраняют при­менением в машине добавочных полюсов (см. § 27.4).

Компенсационные обмотки применяют лишь в машинах сред­ней и большой мощности — более 150—500 кВт при > 440 В, работающих с резкими колебаниями нагрузки, например в двига­телях для прокатных станов. Объясняется это тем, что компенса­ционная обмотка удорожает и усложняет машину и ее применение в некоторых случаях экономически не оправдывается.

Устранение вредного влияния реакции якоря

В связи с тем что реакция якоря неблагоприятно влияет на ра­бочие свойства машины постоянного тока 1, при проектировании машины принимают меры к устранению реакции якоря или хотя бы к ослаблению ее влияния до допустимых пределов.

Компенсационная обмотка. Наиболее эффективным средст­вом подавления влияния реакции якоря по поперечной оси являет­ся применение в машине компенсационной обмотки. Эту обмотку укладывают в пазы полюсных наконечников (рис. 26.7) и включа­ют последовательно с обмоткой якоря таким образом, чтобы МДС компенсационной обмотки была противоположна по направле­нию МДС обмотки якоря . Компенсационную обмотку делают распределенной по поверхности полюсного наконечника всех главных полюсов машины. При этом линейную нагрузку для ком­пенсационной обмотки принимают равной линейной нагрузке об­мотки якоря.

Включение компенсационной обмотки последовательно в цепь якоря обеспечивает автоматичность компенсации МДС якоря при любой (в пределах номинальной) нагрузке машины. Таким образом, в машине постоянного тока с компенсационной обмоткой при переходе от холостого хода к режиму нагрузки закон распределения магнитной индукции в зазоре главных полюсов остается практически неизменным. Однако в межполюсном пространстве часть МДС якоря остается нескомпенсированной. Нежелательное влияние этой МДС на работу щеточного контакта устраняют при­менением в машине добавочных полюсов (см. § 27.4).

Компенсационные обмотки применяют лишь в машинах сред­ней и большой мощности — более 150—500 кВт при > 440 В, работающих с резкими колебаниями нагрузки, например в двига­телях для прокатных станов. Объясняется это тем, что компенса­ционная обмотка удорожает и усложняет машину и ее применение в некоторых случаях экономически не оправдывается.

Обмотки. Обмотки трансформаторов средней и большой мощности выполняют из обмоточных проводов круглого или прямоугольного сечения, изолированных хлопчатобумажной пряжей или кабельной бумагой. Основой обмотки в большинстве случаев является бумажно-бакелитовый цилиндр, на котором крепятся элементы (рейки, угловые шайбы и т. п.), обеспечивающие обмотке механическую и электрическую прочность.

По взаимному расположению на стержне обмотки разделяют на концентрические и чередующиеся. Концентрические обмотки выполняют в виде цилиндров, размещаемых на стержне концентрически: ближе к стержню обычно располагают обмотку НН (требующую меньшей изоляции от стержня), а снаружи – обмотку ВН (рис. 1.10, а).

Чередующиеся (дисковые) обмотки выполняют в виде отдельных секций (дисков) НН и ВН и располагают на стержне в чередующемся порядке (рис. 1.10, б). Чередующиеся обмотки применяют весьма редко, лишь в некоторых трансформаторах специального назначения.

Концентрические обмотки в конструктивном отношении разделяют на несколько типов. Рассмотрим некоторые из них.

1. Цилиндрические однослойные или двухслойные обмотки из провода прямоугольного сечения (рис. 1.11, а) используют главным образом в качестве обмоток НН на номинальный ток до 800 А.

2. Винтовые одно- и многоходовые обмотки выполняют из нескольких параллельных проводов прямоугольного сечения. При этом витки укладывают по винтовой линии, имеющей один или несколько ходов (рис. 1.11, б). Для того чтобы все параллельные проводники одинаково нагружались током, выполняют транспозицию (перекладку) этих проводников. При транспозиции стремятся, чтобы в пределах одного витка каждый проводник занимал все положения. Транспозиция может быть групповой (рис. 1.12, а), когда параллельные провода делятся на две группы и перестановка осуществляется группами, и общей, когда меняется взаимное расположение всех параллельных проводов (рис. 1.12, б).

3. Непрерывные обмотки (рис. 1.11, в) состоят из отдельных дисковых обмоток (секций), намотанных по спирали и соединенных между собой без пайки, т.е. выполненных «непрерывно». Если обмотка выполняется несколькими параллельными проводами, то в ней применяют транспозицию проводов.

Непрерывные обмотки, несмотря на некоторую сложность изготовления, получили наибольшее применение в силовых трансформаторах как в качестве обмоток ВН, так и в качестве обмоток НН. Это объясняется их большой механической прочностью и надежностью.

12билет

1. Параллельной работой двух или нескольких трансформаторов называется работа при параллельном соединении их обмоток как на первичной, так и на вторичной сторонах. При параллельном соединении одноименные зажимы трансформаторов присоединяют к одному и тому же проводу сети.

Для того чтобы нагрузка между параллельно работающими трансформаторами распределялась пропорционально их номинальным мощностям, допускается параллельная работа двухобмоточных трансформаторов при следующих условиях:

1. При одинаковом первичном напряжении вторичные напряжения должны быть равны.

2. Трансформаторы должны принадлежать к одной группе соединения.

3. Трансформаторы должны иметь одинаковые напряжения к. з.

2. Принцип действия синхронного генератора основан на явлении электромагнитной индукции. Ротор с магнитными полюсами создает вращающееся магнитное поле, кото-рое, пересекая обмотку статора, наводит в ней ЭДС. При подключении к генератору нагрузки генератор будет являться источником переменного тока.

Преимуществом таких генераторов является высокая стабильность выходного напряжения, а недостатком - возможность перегрузки по току, так как при завышенной нагрузке, регулятор может чрезмерно повысить ток в обмотке ротора. Еще к недостаткам синхронного генератора можно отнести наличие щеточного узла, который рано или поздно придется обслуживать.

13 билет

1. Способы возбуждения машин постоянного тока

Для работы электрической машины необходимо наличие маг­нитного поля. В большинстве машин постоянного тока это поле создается обмоткой возбуждения, питаемой постоянным током. Свойства машин постоянного тока в значительной степени опре­деляются способом включения обмотки возбуждения, т. е. спосо­бом возбуждения.

По способам возбуждения машины постоянного тока можно классифицировать следующим образом:

машины независимого возбуждения, в которых обмотка возбуждения (ОВ) питается постоянным током от источ­ника, электрически не связанного с обмоткой якоря (рис. 26.8, а);

машины параллельного возбуждения, в которых обмотка возбуждения и обмотка якоря соединены параллельно (рис. 26.8, б);

машины последовательного возбуждения (обыч­но применяемые в качестве двигателей), в которых обмотка воз­буждения и обмотка якоря соединены последовательно (рис. 26.8, в)

машины смешанного возбуждения, в которых имеются две обмотки возбуждения — параллельная ОВ1 и после­довательная ОВ2 (рис. 26.8, г);

м ашины с возбуждением постоянными маг­нитами (рис. 26.8, ).

Все указанные машины (кроме последних) относятся к маши­нам с электромагнитным возбуждением, так как маг­нитное поле в них создается электрическим током, проходящим в обмотке возбуждения.

Начала и концы машин постоянного тока согласно ГОСТу обозначаются: обмотка якоря — Я1 и Я2, обмотка добавочных полюсов — Д1 и Д2, компенсационная обмотка — К1 и К2, обмотка возбуждения независимая — М1 и М2, обмотка возбуждения параллельная (шунтовая) — Ш1 и Ш2, обмотка возбуждения последовательная (сериесная) — С1 и С2.

2. Напряжение на выводах генератора, работающего с нагрузкой, отличается от напряжения этого генератора в режиме х.х. Это объясняется влиянием ряда причин: реакцией якоря, магнитным потоком рассея­ния, падением напряжения в активном сопротивлении обмотки статора.

Как было установлено, при работе нагруженной синхронной машины в ней возникает несколько МДС, которые, взаимодейст­вуя, создают результирующий магнитный поток. Однако при учете факторов, влияющих на напряжение синхронного генератора, ус­ловно исходят из предположения независимого действия всех МДС генератора, т. е. предполагается, что каждая из МДС создает собственный магнитный поток.

Но следует отметить, что такое представление не соответствует физической сущности явлений, так как в одной магнитной системе возникает один лишь магнитный поток - результирующий. Но в данном случае предположение независимости магнитных потоков дает возможность лучше понять влияние всех факторов на работу синхронной машины.

Итак выясним, каково же влияние магнитодвижущих сил на работу явнополюсного синхронного генератора.

1. МДС обмотки возбуждения Fв0, создает магнитный поток возбуждения Ф0, который, сцепляясь с обмоткой статора, наводит в ней основную ЭДС генератора Е0.

2. МДС реакции якоря по продольной оси F1d создает магнит­ный поток Ф1d, который наводит в обмотке статора ЭДС реакции якоря E1d [см. (20.22)], значение которой пропорционально индук­тивному сопротивлению реакции якоря по продольной оси хad [см. (20.24)]. Это сопротивление характеризует уровень влияния реак­ции якоря по продольной оси на работу синхронного генератора. Так, при насыщенной магнитной системе машины магнитный по­ток реакции якоря Ф1d меньше, чем при ненасыщенной магнитной системе. Объясняется это тем, что поток Ф1d почти полностью проходит по стальным участкам магнитопровода, преодолевая не­большой воздушный зазор (см. рис. 20.3, а), а поэтому при маг­нитном насыщении сопротивление этому потоку заметно возрас­тает. При этом индуктивное сопротивление x1d уменьшается.

3. МДС реакции якоря по поперечной оси F1q создает магнит­ный поток Ф1q, который наводит в обмотке статора ЭДС Е1q [см. (20.23)], значение которой пропорционально индуктивному сопро­тивлению реакции якоря по поперечной оси xaq [см. (20.25)]. Со­противление хaq не зависит от магнитного насыщения машины, так как при явнополюсном роторе поток Ф1q проходит в основном по воздуху межполюсного пространства (см. рис. 20.3, б).

4. Магнитный поток рассеяния обмотки статора Фσ1 (см. рис. 11.4) наводит в обмотке статора ЭДС рассеяния Еσ1, значение ко­торой пропорционально индуктивному сопротивлению рассеяния фазы обмотки статора х1 :

= - j x1 . (20.26)

5. Ток в обмотке статора I1 создает активное падение напря­жения в активном сопротивлении фазы обмотки статора r1 :

= r1 (20.27)

Геометрическая сумма всех перечисленных ЭДС, наведенных в обмотке статора,

определяет напряжение на выходе синхронного генератора:

= . (20-28)

Здесь — геометрическая сумма всех ЭДС, наведенных в об­мотке статора результирующим магнитным полем машины, обра­зованным совместным действием всех МДС (Fв.0, F1d, F1q) и пото­ком рассеяния статора Фσ1.

Активное сопротивление фазы обмотки статора r1 у синхронных машин средней и большой мощности невелико, и поэтому даже при номинальной нагрузке падение напряжения I1r1 составляет настолько малую величину, что с некоторым допущением можно принять I1r1 = 0. Тогда уравнение (20.28) можно записать в виде

(20.29)

Выражения (20.28) и (20.29) представляют собой уравнения напряжений явнополюсного синхронного генератора.

В неявнополюсных синхронных генераторах реакция якоря характеризуется полной МДС статора F1 без разделения ее по осям, так как в этих машинах магнитные сопротивления по продольной и поперечной осям одинаковы. Поэтому ЭДС статора в неявнополюсных машинах Е1, равная индуктивному падению напряжения в обмотке статора, пропорциональна индуктивному сопротивлению реакции якоря ха [см. (20.19)], т. е.

(20.30)

Поток реакции якоря Ф1 и поток рассеяния статора Фσ1 создаются одним током I1 [сравните (20.26) и (20.30)], поэтому индуктивные сопротивления ха и х1 можно рассматривать как суммарное индуктивное сопротивление

хс = ха + х1,

представляющее собой синхронное сопротивление неявнополюсной машины. С учетом этого ЭДС реакции якоря Е1 и ЭДС рассея­ния Еσ1 следует рассматривать также как сумму

(20.31)

представляющую собой синхронную ЭДС неявнополюсной машины. С учетом изложенного уравнение напряжений неявнополюсного синхронного генератора имеет вид

(20.32)

или

(20.33)